Found 368 bookmarks
Custom sorting
Language, Graphs, and AI in Industry
Language, Graphs, and AI in Industry
Over the past 5 years, news about AI has been filled with amazing research – at first focused on graph neural networks (GNNs) and more recently about large language models (LLMs). Understand that business tends to use connected data – networks, graphs – whether you’re untangling supply networks in Manufacturing, working on drug discovery for Pharma, or mitigating fraud in Finance. Starting from supplier agreements, bill of materials, internal process docs, sales contracts, etc., there’s a graph inside nearly every business process, one that is defined by language. This talk addresses how to leverage both natural language and graph technologies together for AI applications in industry. We’ll look at how LLMs get used to build and augment graphs, and conversely how graph data gets used to ground LLMs for generative AI use cases in industry – where a kind of “virtuous cycle” is emerging for feedback loops based on graph data. Our team has been engaged, on the one hand, with enterprise use cases in manufacturing. On the other hand we’ve worked as intermediaries between research teams funded by enterprise and open source projects needed by enterprise – particularly in the open source ecosystem for AI models. Also, there are caveats; this work is not simple. Translating from latest research into production-ready code is especially complex and expensive. Let’s examine caveats which other teams should understand, and look toward practical examples.
·derwen.ai·
Language, Graphs, and AI in Industry
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
Although I have of course heard this question more often in recent months than in all the years before, it is really just a reiteration of the question of all questions, which is probably the most fundamental question of all for AI: How much human (or symbolic AI) does statistical AI need? With ever
·linkedin.com·
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge, enhancing their meaning and explainability. Let's delve into… | 25 comments on LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge,
·linkedin.com·
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding. They define the concepts and relationships that… | 29 comments on LinkedIn
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
·linkedin.com·
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Entity alignment, which is a prerequisite for creating a more comprehensive Knowledge Graph (KG), involves pinpointing equivalent entities across disparate KGs. Contemporary methods for entity alignment have predominantly utilized knowledge embedding models to procure entity embeddings that encapsulate various similarities-structural, relational, and attributive. These embeddings are then integrated through attention-based information fusion mechanisms. Despite this progress, effectively harnessing multifaceted information remains challenging due to inherent heterogeneity. Moreover, while Large Language Models (LLMs) have exhibited exceptional performance across diverse downstream tasks by implicitly capturing entity semantics, this implicit knowledge has yet to be exploited for entity alignment. In this study, we propose a Large Language Model-enhanced Entity Alignment framework (LLMEA), integrating structural knowledge from KGs with semantic knowledge from LLMs to enhance entity alignment. Specifically, LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across KGs and edit distances to a virtual equivalent entity. It then engages an LLM iteratively, posing multiple multi-choice questions to draw upon the LLM's inference capability. The final prediction of the equivalent entity is derived from the LLM's output. Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models. Additional ablation studies underscore the efficacy of our proposed framework.
·arxiv.org·
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models 🔲 ⚫ Large language models (LLMs) have rapidly advanced, displaying impressive abilities in comprehending… | 27 comments on LinkedIn
The Intersection of Graphs and Language Models
·linkedin.com·
The Intersection of Graphs and Language Models
LangGraph: Multi-Agent Workflows
LangGraph: Multi-Agent Workflows
Links * Python Examples * JS Examples * YouTube Last week we highlighted LangGraph - a new package (available in both Python and JS) to better enable creation of LLM workflows containing cycles, which are a critical component of most agent runtimes. As a part of the launch, we highlighted two simple runtimes:
a second set of use cases for langgraph - multi-agent workflows. In this blog we will cover:What does "multi-agent" mean?Why are "multi-agent" workflows interesting?Three concrete examples of using LangGraph for multi-agent workflowsTwo examples of third-party applications built on top of LangGraph using multi-agent workflows (GPT-Newspaper and CrewAI)Comparison to other frameworks (Autogen and CrewAI)
·blog.langchain.dev·
LangGraph: Multi-Agent Workflows
🦜🕸️LangGraph | 🦜️🔗 Langchain
🦜🕸️LangGraph | 🦜️🔗 Langchain
⚡ Building language agents as graphs ⚡
🦜🕸️LangGraph⚡ Building language agents as graphs ⚡Overview​LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner. It is inspired by Pregel and Apache Beam. The current interface exposed is one inspired by NetworkX.The main use is for adding cycles to your LLM application. Crucially, this is NOT a DAG framework. If you want to build a DAG, you should use just use LangChain Expression Language.Cycles are important for agent-like behaviors, where you call an LLM in a loop, asking it what action to take next.
·python.langchain.com·
🦜🕸️LangGraph | 🦜️🔗 Langchain
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation 🔗 As artificial intelligence permeates business… | 29 comments on LinkedIn
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
·linkedin.com·
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation