Found 361 bookmarks
Custom sorting
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models With the increasing complexity of… | 12 comments on LinkedIn
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
·linkedin.com·
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
Why do LangChain and Autogen use graphs? Here are the top reasons
Why do LangChain and Autogen use graphs? Here are the top reasons
LLM frameworks like LangChain are moving towards a graph-based approach for handling their workflows. This represents the initial steps of a much larger… | 90 comments on LinkedIn
Why do LangChain and Autogen use graphs? Here are the top reasons
·linkedin.com·
Why do LangChain and Autogen use graphs? Here are the top reasons
Knowledge Engineering using Large Language Models
Knowledge Engineering using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·arxiv.org·
Knowledge Engineering using Large Language Models
Chatbot created based on the prolific writings of Mike Dillinger. This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
Chatbot created based on the prolific writings of Mike Dillinger. This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
Check out this chatbot (https://lnkd.in/gv8Afk57) that I created entirely based on the prolific writings of Mike Dillinger, PhD . This chatbot helps you better…
created entirely based on the prolific writings of Mike Dillinger, PhD . This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
·linkedin.com·
Chatbot created based on the prolific writings of Mike Dillinger. This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
Language, Graphs, and AI in Industry
Language, Graphs, and AI in Industry
Over the past 5 years, news about AI has been filled with amazing research – at first focused on graph neural networks (GNNs) and more recently about large language models (LLMs). Understand that business tends to use connected data – networks, graphs – whether you’re untangling supply networks in Manufacturing, working on drug discovery for Pharma, or mitigating fraud in Finance. Starting from supplier agreements, bill of materials, internal process docs, sales contracts, etc., there’s a graph inside nearly every business process, one that is defined by language. This talk addresses how to leverage both natural language and graph technologies together for AI applications in industry. We’ll look at how LLMs get used to build and augment graphs, and conversely how graph data gets used to ground LLMs for generative AI use cases in industry – where a kind of “virtuous cycle” is emerging for feedback loops based on graph data. Our team has been engaged, on the one hand, with enterprise use cases in manufacturing. On the other hand we’ve worked as intermediaries between research teams funded by enterprise and open source projects needed by enterprise – particularly in the open source ecosystem for AI models. Also, there are caveats; this work is not simple. Translating from latest research into production-ready code is especially complex and expensive. Let’s examine caveats which other teams should understand, and look toward practical examples.
·derwen.ai·
Language, Graphs, and AI in Industry
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
Although I have of course heard this question more often in recent months than in all the years before, it is really just a reiteration of the question of all questions, which is probably the most fundamental question of all for AI: How much human (or symbolic AI) does statistical AI need? With ever
·linkedin.com·
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge, enhancing their meaning and explainability. Let's delve into… | 25 comments on LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge,
·linkedin.com·
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding. They define the concepts and relationships that… | 29 comments on LinkedIn
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
·linkedin.com·
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Entity alignment, which is a prerequisite for creating a more comprehensive Knowledge Graph (KG), involves pinpointing equivalent entities across disparate KGs. Contemporary methods for entity alignment have predominantly utilized knowledge embedding models to procure entity embeddings that encapsulate various similarities-structural, relational, and attributive. These embeddings are then integrated through attention-based information fusion mechanisms. Despite this progress, effectively harnessing multifaceted information remains challenging due to inherent heterogeneity. Moreover, while Large Language Models (LLMs) have exhibited exceptional performance across diverse downstream tasks by implicitly capturing entity semantics, this implicit knowledge has yet to be exploited for entity alignment. In this study, we propose a Large Language Model-enhanced Entity Alignment framework (LLMEA), integrating structural knowledge from KGs with semantic knowledge from LLMs to enhance entity alignment. Specifically, LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across KGs and edit distances to a virtual equivalent entity. It then engages an LLM iteratively, posing multiple multi-choice questions to draw upon the LLM's inference capability. The final prediction of the equivalent entity is derived from the LLM's output. Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models. Additional ablation studies underscore the efficacy of our proposed framework.
·arxiv.org·
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models 🔲 ⚫ Large language models (LLMs) have rapidly advanced, displaying impressive abilities in comprehending… | 27 comments on LinkedIn
The Intersection of Graphs and Language Models
·linkedin.com·
The Intersection of Graphs and Language Models
LangGraph: Multi-Agent Workflows
LangGraph: Multi-Agent Workflows
Links * Python Examples * JS Examples * YouTube Last week we highlighted LangGraph - a new package (available in both Python and JS) to better enable creation of LLM workflows containing cycles, which are a critical component of most agent runtimes. As a part of the launch, we highlighted two simple runtimes:
a second set of use cases for langgraph - multi-agent workflows. In this blog we will cover:What does "multi-agent" mean?Why are "multi-agent" workflows interesting?Three concrete examples of using LangGraph for multi-agent workflowsTwo examples of third-party applications built on top of LangGraph using multi-agent workflows (GPT-Newspaper and CrewAI)Comparison to other frameworks (Autogen and CrewAI)
·blog.langchain.dev·
LangGraph: Multi-Agent Workflows