Found 328 bookmarks
Custom sorting
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
Although I have of course heard this question more often in recent months than in all the years before, it is really just a reiteration of the question of all questions, which is probably the most fundamental question of all for AI: How much human (or symbolic AI) does statistical AI need? With ever
·linkedin.com·
LLMs have revolutionized AI. Do we still need knowledge models and taxonomies, and why? | LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge, enhancing their meaning and explainability. Let's delve into… | 25 comments on LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge,
·linkedin.com·
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding. They define the concepts and relationships that… | 29 comments on LinkedIn
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
·linkedin.com·
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Entity alignment, which is a prerequisite for creating a more comprehensive Knowledge Graph (KG), involves pinpointing equivalent entities across disparate KGs. Contemporary methods for entity alignment have predominantly utilized knowledge embedding models to procure entity embeddings that encapsulate various similarities-structural, relational, and attributive. These embeddings are then integrated through attention-based information fusion mechanisms. Despite this progress, effectively harnessing multifaceted information remains challenging due to inherent heterogeneity. Moreover, while Large Language Models (LLMs) have exhibited exceptional performance across diverse downstream tasks by implicitly capturing entity semantics, this implicit knowledge has yet to be exploited for entity alignment. In this study, we propose a Large Language Model-enhanced Entity Alignment framework (LLMEA), integrating structural knowledge from KGs with semantic knowledge from LLMs to enhance entity alignment. Specifically, LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across KGs and edit distances to a virtual equivalent entity. It then engages an LLM iteratively, posing multiple multi-choice questions to draw upon the LLM's inference capability. The final prediction of the equivalent entity is derived from the LLM's output. Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models. Additional ablation studies underscore the efficacy of our proposed framework.
·arxiv.org·
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation 🔗 As artificial intelligence permeates business… | 29 comments on LinkedIn
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
·linkedin.com·
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Understand and Exploit GenAI With Gartner’s New Impact Radar
Understand and Exploit GenAI With Gartner’s New Impact Radar
Use Gartner’s impact radar for generative AI to plan investments and strategy with four key themes in mind: ☑️Model-related innovations ☑️Model performance and AI safety ☑️Model build and data-related ☑️AI-enabled applications Explore all 25 technologies and trends: https://www.gartner.com/en/articles/understand-and-exploit-gen-ai-with-gartner-s-new-impact-radar
·gartner.com·
Understand and Exploit GenAI With Gartner’s New Impact Radar
The Role of the Ontologist in the Age of LLMs
The Role of the Ontologist in the Age of LLMs
What do we mean when we say something is a kind of thing? I’ve been wrestling with that question a great deal of late, partly because I think the role of the ontologist transcends the application of knowledge graphs, especially as I’ve watched LLMs and Llamas become a bigger part of the discussion.
·ontologist.substack.com·
The Role of the Ontologist in the Age of LLMs
Knowledge Engineering Using Large Language Models
Knowledge Engineering Using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·drops.dagstuhl.de·
Knowledge Engineering Using Large Language Models
On to Knowledge-infused Language Models
On to Knowledge-infused Language Models
A broad and deep body of on-going research – hundreds of experiments! – has shown quite conclusively that knowledge graphs are essential to guide, complement, and enrich LLMs in systematic ways. The very wide variety of tests over domains and possible combinations of KGs and LLMs attests to the robu
·linkedin.com·
On to Knowledge-infused Language Models
Do Similar Entities have Similar Embeddings?
Do Similar Entities have Similar Embeddings?
Knowledge graph embedding models (KGEMs) developed for link prediction learn vector representations for graph entities, known as embeddings. A common tacit assumption is the KGE entity similarity assumption, which states that these KGEMs retain the graph's structure within their embedding space, i.e., position similar entities close to one another. This desirable property make KGEMs widely used in downstream tasks such as recommender systems or drug repurposing. Yet, the alignment of graph similarity with embedding space similarity has rarely been formally evaluated. Typically, KGEMs are assessed based on their sole link prediction capabilities, using ranked-based metrics such as Hits@K or Mean Rank. This paper challenges the prevailing assumption that entity similarity in the graph is inherently mirrored in the embedding space. Therefore, we conduct extensive experiments to measure the capability of KGEMs to cluster similar entities together, and investigate the nature of the underlying factors. Moreover, we study if different KGEMs expose a different notion of similarity. Datasets, pre-trained embeddings and code are available at: https://github.com/nicolas-hbt/similar-embeddings.
·arxiv.org·
Do Similar Entities have Similar Embeddings?