Found 402 bookmarks
Custom sorting
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
𝗟𝗲𝘁 𝘆𝗼𝘂𝗿 𝗱𝗮𝘁𝗮 𝘀𝗽𝗲𝗮𝗸! Inject structured data directly with GraphTokens and supercharge your LLM's reasoning abilities. Our exciting research is… | 16 comments on LinkedIn
·linkedin.com·
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge, enhancing their meaning and explainability. Let's delve into… | 25 comments on LinkedIn
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge,
·linkedin.com·
Ontologies and Knowledge Graphs offer a way to connect embedding vectors to structured knowledge
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding. They define the concepts and relationships that… | 29 comments on LinkedIn
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
·linkedin.com·
Ontologies are the backbone of the Semantic Web bridging the gap between human and machine understanding
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Entity alignment, which is a prerequisite for creating a more comprehensive Knowledge Graph (KG), involves pinpointing equivalent entities across disparate KGs. Contemporary methods for entity alignment have predominantly utilized knowledge embedding models to procure entity embeddings that encapsulate various similarities-structural, relational, and attributive. These embeddings are then integrated through attention-based information fusion mechanisms. Despite this progress, effectively harnessing multifaceted information remains challenging due to inherent heterogeneity. Moreover, while Large Language Models (LLMs) have exhibited exceptional performance across diverse downstream tasks by implicitly capturing entity semantics, this implicit knowledge has yet to be exploited for entity alignment. In this study, we propose a Large Language Model-enhanced Entity Alignment framework (LLMEA), integrating structural knowledge from KGs with semantic knowledge from LLMs to enhance entity alignment. Specifically, LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across KGs and edit distances to a virtual equivalent entity. It then engages an LLM iteratively, posing multiple multi-choice questions to draw upon the LLM's inference capability. The final prediction of the equivalent entity is derived from the LLM's output. Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models. Additional ablation studies underscore the efficacy of our proposed framework.
·arxiv.org·
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models 🔲 ⚫ Large language models (LLMs) have rapidly advanced, displaying impressive abilities in comprehending… | 27 comments on LinkedIn
The Intersection of Graphs and Language Models
·linkedin.com·
The Intersection of Graphs and Language Models
LangGraph: Multi-Agent Workflows
LangGraph: Multi-Agent Workflows
Links * Python Examples * JS Examples * YouTube Last week we highlighted LangGraph - a new package (available in both Python and JS) to better enable creation of LLM workflows containing cycles, which are a critical component of most agent runtimes. As a part of the launch, we highlighted two simple runtimes:
a second set of use cases for langgraph - multi-agent workflows. In this blog we will cover:What does "multi-agent" mean?Why are "multi-agent" workflows interesting?Three concrete examples of using LangGraph for multi-agent workflowsTwo examples of third-party applications built on top of LangGraph using multi-agent workflows (GPT-Newspaper and CrewAI)Comparison to other frameworks (Autogen and CrewAI)
·blog.langchain.dev·
LangGraph: Multi-Agent Workflows
🦜🕸️LangGraph | 🦜️🔗 Langchain
🦜🕸️LangGraph | 🦜️🔗 Langchain
⚡ Building language agents as graphs ⚡
🦜🕸️LangGraph⚡ Building language agents as graphs ⚡Overview​LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner. It is inspired by Pregel and Apache Beam. The current interface exposed is one inspired by NetworkX.The main use is for adding cycles to your LLM application. Crucially, this is NOT a DAG framework. If you want to build a DAG, you should use just use LangChain Expression Language.Cycles are important for agent-like behaviors, where you call an LLM in a loop, asking it what action to take next.
·python.langchain.com·
🦜🕸️LangGraph | 🦜️🔗 Langchain
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation 🔗 As artificial intelligence permeates business… | 29 comments on LinkedIn
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
·linkedin.com·
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Graph & Geometric ML in 2024: Where We Are and What’s Next (Part I — Theory & Architectures)
Graph & Geometric ML in 2024: Where We Are and What’s Next (Part I — Theory & Architectures)
Trends and recent advancements in Graph and Geometric Deep Learning
Following the tradition from previous years, we interviewed a cohort of distinguished and prolific academic and industrial experts in an attempt to summarise the highlights of the past year and predict what is in store for 2024. Past 2023 was so ripe with results that we had to break this post into two parts. This is Part I focusing on theory & new architectures,
·towardsdatascience.com·
Graph & Geometric ML in 2024: Where We Are and What’s Next (Part I — Theory & Architectures)
pacoid (Paco Xander Nathan)
pacoid (Paco Xander Nathan)
Python open source projects; natural language meets graph technologies; graph topological transformations; graph levels of detail (abstraction layers)
·huggingface.co·
pacoid (Paco Xander Nathan)
Understand and Exploit GenAI With Gartner’s New Impact Radar
Understand and Exploit GenAI With Gartner’s New Impact Radar
Use Gartner’s impact radar for generative AI to plan investments and strategy with four key themes in mind: ☑️Model-related innovations ☑️Model performance and AI safety ☑️Model build and data-related ☑️AI-enabled applications Explore all 25 technologies and trends: https://www.gartner.com/en/articles/understand-and-exploit-gen-ai-with-gartner-s-new-impact-radar
·gartner.com·
Understand and Exploit GenAI With Gartner’s New Impact Radar