Found 500 bookmarks
Custom sorting
Medical Graph RAG
Medical Graph RAG
LLMs and Knowledge Graphs: A love story ๐Ÿ’“ Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a frameworkโ€ฆ
ยทlinkedin.comยท
Medical Graph RAG
LLM text-to-SQL doesn't work. What we ended up building was an ontology architecture
LLM text-to-SQL doesn't work. What we ended up building was an ontology architecture
we spent 12 months figuring out that LLM text-to-SQL doesn't work. and so we re-architected our entire system. what we ended up building was an ontologyโ€ฆ | 36 comments on LinkedIn
LLM text-to-SQL doesn't work.and so we re-architected our entire system.what we ended up building was an ontology architecture
ยทlinkedin.comยท
LLM text-to-SQL doesn't work. What we ended up building was an ontology architecture
deepset GraphRAG demo
deepset GraphRAG demo
Utilizing knowledge graphs is one popular solution to drive up the performance of AI applications. We work closely together with other key players such as Emilโ€ฆ
ยทlinkedin.comยท
deepset GraphRAG demo
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐—ฅ๐—”๐—š ๐—œ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—™๐—ฎ๐—ถ๐—น ๐——๐˜‚๐—ฒ ๐—ง๐—ผ ๐—œ๐—ป๐˜€๐˜‚๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ข๐—ป ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ป๐˜ ๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Žโ€ฆ | 12 comments on LinkedIn
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
ยทlinkedin.comยท
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
Counterfeit Knowledge Graphs | LinkedIn
Counterfeit Knowledge Graphs | LinkedIn
When we progress from data to knowledge, there is what physicists call a phase change like the change from water to ice or from mud to brick. The ingredients are the same throughout the transition, but we compress and restructure these ingredients into something entirely new with dramatically differ
Counterfeit Knowledge Graphs
ยทlinkedin.comยท
Counterfeit Knowledge Graphs | LinkedIn
Benchmarking GraphRAG
Benchmarking GraphRAG
๐Ÿฅณย The Wait is Over!ย As promised from my last post (https://lnkd.in/g9_-9i8D), I took MSFT open-source GraphRAG for a ๐ŸŽ๏ธ๐Ÿ’จย road testย via my JAM4RAG (Justโ€ฆ | 12 comments on LinkedIn
GraphRAG
ยทlinkedin.comยท
Benchmarking GraphRAG
An enterprise-grade implementation of Knowledge Graphs for LLM apps (Graph RAG)
An enterprise-grade implementation of Knowledge Graphs for LLM apps (Graph RAG)
There is a lot of noise about #KnowledgeGraphs for LLM apps. But we haven't seen an enterprise-grade implementation. This approach could be one. "Theโ€ฆ | 11 comments on LinkedIn
There is a lot of noise about hashtag#KnowledgeGraphs for LLM apps. But we haven't seen an enterprise-grade implementation. This approach could be one.
ยทlinkedin.comยท
An enterprise-grade implementation of Knowledge Graphs for LLM apps (Graph RAG)
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
This is something very cool! 3. GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models "GraphReader addresses theโ€ฆ
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
ยทlinkedin.comยท
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem? | LinkedIn
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem? | LinkedIn
Recently, Microsoft announced with a post their GraphRAG offering. This article provides a brief overview of their approach, how it compares to other Graph RAG varieties, what problems it can address and what it cannot.
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem?
ยทlinkedin.comยท
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem? | LinkedIn
RAG: Graph Retrieval vs Graph Reasoning
RAG: Graph Retrieval vs Graph Reasoning
Knowledge graphs (KGs) are a specific type of #data structure designed to represent entities and the connections between them. They move beyond simply storingโ€ฆ | 14 comments on LinkedIn
๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต ๐—ฅ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด
ยทlinkedin.comยท
RAG: Graph Retrieval vs Graph Reasoning