GraphNews

4357 bookmarks
Custom sorting
Neo4j on Twitter
Neo4j on Twitter
In this week's #twin4j, @tb_tomaz create a news monitoring data pipeline using Natural Language Processing and a Knowledge Graph.https://t.co/mIsm7Uj4iL #neo4j pic.twitter.com/XSQsQYhNzf— Neo4j (@neo4j) February 7, 2021
·twitter.com·
Neo4j on Twitter
Neo4j on Twitter
Neo4j on Twitter
Working on part3 of #Wordnet in #Neo4jhttps://t.co/5qcL0LWtoB#python + #nltk + cypher for "similar phrase generation" following graph pattern entry>sense>concept and extending it w. hyper/hyponym to make general/specificmore specific variants of data? metadata,raw data...👌 pic.twitter.com/BMcOPbaub3— Jesús Barrasa (@BarrasaDV) February 8, 2021
·twitter.com·
Neo4j on Twitter
Third Time Is The Charm For Nebula Graph Database
Third Time Is The Charm For Nebula Graph Database
One of the great things about the database market is that there are many different kinds of data and the problems that need to be addressed to store,
·nextplatform.com·
Third Time Is The Charm For Nebula Graph Database
WikiResearch on Twitter
WikiResearch on Twitter
"CHOLAN: A Modular Approach for Neural Entity Linking on @Wikipedia and @Wikidata", a pipeline of two transformer-based models integrated sequentially for end-to-end entity linking.(Kannan Ravi et al, 2021)paper: https://t.co/VD9uyxc0RScode/data: https://t.co/BZYG5XGPO5 pic.twitter.com/aqLPDopXAb— WikiResearch (@WikiResearch) February 8, 2021
·twitter.com·
WikiResearch on Twitter
Neo4j on Twitter
Neo4j on Twitter
Marvel gangs: Nice network graph of links among #MCU heroes. Six gangs centered on #CaptainAmerica (most central in MCU), #Thor , #SpiderMan , #HULK, #FantasticFour and X-Men. Lots of overlap, especially between Cap, Tony Stark and Thor. Data at Kaggle. https://t.co/v5uqSAaIxK pic.twitter.com/xDfBEQS6og— Dan Armstrong (@Fuertebrazos) February 9, 2021
·twitter.com·
Neo4j on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
OntoEnricher: A Deep Learning Approach for Ontology Enrichment from Unstructured Text https://t.co/az22OFHYf7 pic.twitter.com/sUpamyvxyw— Aaron Bradley (@aaranged) February 9, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
A Framework for Federated SPARQL Query Processing over Heterogeneous Linked Data Fragments https://t.co/oGdCVjTCyv pic.twitter.com/fL2bmDIgN4— Aaron Bradley (@aaranged) February 9, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Linked Data projects at the Vrije Universiteit Amsterdam Network Institute @dbpedia https://t.co/uYNpEMGn0Y— Aaron Bradley (@aaranged) February 9, 2021
·twitter.com·
Aaron Bradley on Twitter
SEO | 2020 | The Web Almanac by HTTP Archive
SEO | 2020 | The Web Almanac by HTTP Archive
SEO chapter of the 2020 Web Almanac covering content, meta tags, indexability, linking, speed, structured data, internationalization, SPAs, AMP and security.
·almanac.httparchive.org·
SEO | 2020 | The Web Almanac by HTTP Archive
Philip Vollet on LinkedIn: #datascience #technology #graphs
Philip Vollet on LinkedIn: #datascience #technology #graphs
Connected Papers are now partnered with arXiv.org and from now on every paper page in arXiv will link to a corresponding Connected Papers graph! Check...
·linkedin.com·
Philip Vollet on LinkedIn: #datascience #technology #graphs
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Patterns for Representing Knowledge Graphs to Communicate Situational Knowledge of Service Robots https://t.co/xktHqliz8q pic.twitter.com/yZgiSFgQeI— Aaron Bradley (@aaranged) January 28, 2021
·twitter.com·
Aaron Bradley on Twitter
Graphs & Networks on Twitter
Graphs & Networks on Twitter
The English WordNet in #Neo4j. https://t.co/buXxA8OdqX #NLP #KnowledgeGraphs pic.twitter.com/MY0EAaRDon— Graphs & Networks (@TheOrbifold) February 1, 2021
·twitter.com·
Graphs & Networks on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Towards a Systematic Approach to Sync FactualData across #Wikipedia, #Wikidata and ExternalData Sources"(Hellmann et al, 2021)paper: https://t.co/TlYkPg5jg6tool: https://t.co/YPVhcgP8W7 pic.twitter.com/bSnkPOmHeU— WikiResearch (@WikiResearch) February 1, 2021
·twitter.com·
WikiResearch on Twitter
Learning SPARQL on Twitter
Learning SPARQL on Twitter
"GovData goes #SPARQL. From now on, queries on the original metadata are possible via a triple store endpoint:" https://t.co/eDvPCxgriO https://t.co/lvlagMyzsC— Learning SPARQL (@LearningSPARQL) January 30, 2021
·twitter.com·
Learning SPARQL on Twitter
Graphs & Networks on Twitter
Graphs & Networks on Twitter
Graph analysis using the tidyverse.https://t.co/PIIN0UFlzH #rstats #graphs pic.twitter.com/cs7ynHD9rh— Graphs & Networks (@TheOrbifold) February 2, 2021
·twitter.com·
Graphs & Networks on Twitter
Roberto Navigli on Twitter
Roberto Navigli on Twitter
Today is the day! #BabelNet 5 is out! https://t.co/ybsOc0WNmDNew interface, up-to-date content in 500 languages, 20 million synsets, WordNet 2020, and much more! Thanks to the great team behind this fantastic release! #knowledgegraphs #multilinguality @SapienzaNLP @Babelscape pic.twitter.com/5rCIEAixD0— Roberto Navigli (@RNavigli) February 2, 2021
·twitter.com·
Roberto Navigli on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"Each instance of ResearchSpace has at its core a dynamic and expandable graph-based representation of networks of people, things, places, and events, a structure we refer to as the knowledge graph." https://t.co/oab1VKFPVd— Aaron Bradley (@aaranged) February 1, 2021
·twitter.com·
Aaron Bradley on Twitter
Michael Bronstein on Twitter
Michael Bronstein on Twitter
Dynamic graphs are a big part of how Twitter does what it does. We use them to model networks that evolve over time. In this post @emaros96 & @mmbronstein discuss a new ML model developed by Twitter to efficiently predict activity in dynamic graphs.https://t.co/BKk0BBTAk0— Twitter Engineering (@TwitterEng) February 1, 2021
·twitter.com·
Michael Bronstein on Twitter