Foundation Models Know Enough
LLMs already contain overlapping world models. You just have to ask them right.
Ontologists reply to an LLM output, “That’s not a real ontology—it’s not a formal conceptualization.”
But that’s just the No True Scotsman fallacy dressed up in OWL. Boring. Not growth-oriented. Look forward, angel.
A foundation model is a compression of human knowledge. The real problem isn't that we "lack a conceptualization". The real problem with an FM is that they contain too many. FMs contain conceptualizations—plural. Messy? Sure. But usable.
At Stardog, we’re turning this latent structure into real ontologies using symbolic knowledge distillation. Prompt orchestration → structure extraction → formal encoding. OWL, SHACL, and friends. Shake till mixed. Rinse. Repeat. Secret sauce simmered and reduced.
This isn't theoretical hard. We avoid that. It’s merely engineering hard. We LTF into that!
But the payoff means bootstrapping rich, new ontologies at scale: faster, cheaper, with lineage. It's the intersection of FM latent space, formal ontology, and user intent expressed via CQs. We call it the Symbolic Latent Layer (SLL). Cute eh?
The future of enterprise AI isn’t just documents. It’s distilling structured symbolic knowledge from LLMs and plugging it into agents, workflows, and reasoning engines.
You don’t need a priesthood to get a formal ontology anymore. You need a good prompt and a smarter pipeline and the right EKG platform.
There's a lot more to say about this so I said it at Stardog Labs https://lnkd.in/eY5Sibed | 17 comments on LinkedIn