FinReflectKG: Agentic Construction and Evaluation of Financial Knowledge Graphs
Sharing our recent research 𝐅𝐢𝐧𝐑𝐞𝐟𝐥𝐞𝐜𝐭𝐊𝐆: 𝐀𝐠𝐞𝐧𝐭𝐢𝐜 𝐂𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐅𝐢𝐧𝐚𝐧𝐜𝐢𝐚𝐥 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞 𝐆𝐫𝐚𝐩𝐡𝐬. It is the largest financial knowledge graph built from unstructured data. The preprint of our article is out on arXiv now (link is in the comments). It is coauthored with Abhinav Arun | Fabrizio Dimino | Tejas Prakash Agrawal
While LLMs make it easier than ever to generate knowledge graphs, the real challenge lies in ensuring quality without hallucinations, with strong coverage, precision, comprehensiveness, and relevance. FinReflectKG tackles this through an iterative, evaluation-driven agentic approach, carefully optimized across multiple evaluation metrics to deliver a trustworthy and high-quality knowledge graph.
Designed to power use cases like entity search, question answering, signal generation, predictive modeling, and financial network analysis, FinReflectKG sets a new benchmark for building reliable financial KGs and showcases the potential of agentic workflows in LLM-driven systems.
We will be creating a suite of benchmarks using FinReflectKG for KG related tasks in financial services. More details to come soon. | 15 comments on LinkedIn