Agentic Knowledge Graph Construction
Stop manually building your company's brain. โ
Having reviewed the excellent DeepLearning.AI lecture on Agentic Knowledge Graph Construction, by Andreas Kollegger and writing a book on Agentic graph system with Sam Julien, it is clear that the use of agentic systems represents a shift in how we build and maintain knowledge graphs (KGs).
Most organizations are sitting on a goldmine of data spread across CSVs, documents, and databases.
The dream is to connect it all into a unified Knowledge Graph, an intelligent brain that understands your entire business.
The reality? It's a brutal, expensive, and unscalable manual process.
But a new approach is changing everything.
Hereโs the new playbook for building intelligent systems:
๐ง Deploy an AI Agent Workforce
Instead of rigid scripts, you use a cognitive assembly line of specialized AI agents. A Proposer agent designs the data model, a Critic refines it, and an Extractor pulls the facts.
This modular approach is proven to reduce errors and improve the accuracy and coherence of the final graph.
๐จ Treat AI as a Designer, Not Just a Doer
The agents act as data architects. In discovery mode, they analyze unstructured data (like customer reviews) and propose a new logical structure from scratch.
In an enterprise with an existing data model, they switch to alignment mode, mapping new information to the established structure.
๐๏ธ Use a 3-Part Graph Architecture
This technique is key to managing data quality and uncertainty. You create three interconnected graphs:
The Domain Graph: Your single source of truth, built from trusted, structured data.
The Lexical Graph: The raw, original text from your documents, preserving the evidence.
The Subject Graph: An AI-generated bridge that connects them. It holds extracted insights that are validated before being linked to your trusted data.
Jaro-Winkler is a string comparison algorithm that measures the similarity or edit distance between two strings. It can be used here for entity resolution, the process of identifying and linking entities from the unstructured text (Subject Graph) to the official entities in the structured database (Domain Graph).
For example, the algorithm compares a product name extracted from a customer review (e.g., "the gothenburg table") with the official product names in the database. If the Jaro-Winkler similarity score is above a certain threshold, the system automatically creates a CORRESPONDS_TO relationship, effectively linking the customer's comment to the correct product in the supply chain graph.
๐ค Augment Humans, Don't Replace Them
The workflow is Propose, then Approve. AI does the heavy lifting, but a human expert makes the final call.
This process is made reliable by tools like Pydantic and Outlines, which enforce a rigid contract on the AI's output, ensuring every piece of data is perfectly structured and consistent.
And once discovered and validated, a schema can be enforced. | 32 comments on LinkedIn