GraphNews

4343 bookmarks
Custom sorting
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
The autonomous driving industry is expected to grow by over 20 times in the coming decade and, thus, motivate researchers to delve into it. The primary focus of their research is to ensure safety, comfort, and efficiency. An autonomous vehicle has several modules responsible for one or more of the aforementioned items. Among these modules, the trajectory planner plays a pivotal role in the safety of the vehicle and the comfort of its passengers. The module is also responsible for respecting kinematic constraints and any applicable road constraints. In this paper, a novel online spatial-temporal graph trajectory planner is introduced to generate safe and comfortable trajectories. First, a spatial-temporal graph is constructed using the autonomous vehicle, its surrounding vehicles, and virtual nodes along the road with respect to the vehicle itself. Next, the graph is forwarded into a sequential network to obtain the desired states. To support the planner, a simple behavioral layer is also presented that determines kinematic constraints for the planner. Furthermore, a novel potential function is also proposed to train the network. Finally, the proposed planner is tested on three different complex driving tasks, and the performance is compared with two frequently used methods. The results show that the proposed planner generates safe and feasible trajectories while achieving similar or longer distances in the forward direction and comparable comfort ride.
·arxiv.org·
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
Accurate traffic forecasting is essential for effective urban planning and congestion management. Deep learning (DL) approaches have gained colossal success in traffic forecasting but still face challenges in capturing the intricacies of traffic dynamics. In this paper, we identify and address this challenges by emphasizing that spatial features are inherently dynamic and change over time. A novel in-depth feature representation, called Dynamic Spatio-Temporal (Dyn-ST) features, is introduced, which encapsulates spatial characteristics across varying times. Moreover, a Dynamic Spatio-Temporal Graph Transformer Network (DST-GTN) is proposed by capturing Dyn-ST features and other dynamic adjacency relations between intersections. The DST-GTN can model dynamic ST relationships between nodes accurately and refine the representation of global and local ST characteristics by adopting adaptive weights in low-pass and all-pass filters, enabling the extraction of Dyn-ST features from traffic time-series data. Through numerical experiments on public datasets, the DST-GTN achieves state-of-the-art performance for a range of traffic forecasting tasks and demonstrates enhanced stability.
·arxiv.org·
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
A Survey on Semantic Modeling for Building Energy Management
A Survey on Semantic Modeling for Building Energy Management
Buildings account for a substantial portion of global energy consumption. Reducing buildings' energy usage primarily involves obtaining data from building systems and environment, which are instrumental in assessing and optimizing the building's performance. However, as devices from various manufacturers represent their data in unique ways, this disparity introduces challenges for semantic interoperability and creates obstacles in developing scalable building applications. This survey explores the leading semantic modeling techniques deployed for energy management in buildings. Furthermore, it aims to offer tangible use cases for applying semantic models, shedding light on the pivotal concepts and limitations intrinsic to each model. Our findings will assist researchers in discerning the appropriate circumstances and methodologies for employing these models in various use cases.
·arxiv.org·
A Survey on Semantic Modeling for Building Energy Management
GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding
GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding
Integrating large language models (LLMs) with knowledge graphs derived from domain-specific data represents an important advancement towards more powerful and factual reasoning. As these models grow more capable, it is crucial to enable them to perform multi-step inferences over real-world knowledge graphs while minimizing hallucination. While large language models excel at conversation and text generation, their ability to reason over domain-specialized graphs of interconnected entities remains limited. For example, can we query a LLM to identify the optimal contact in a professional network for a specific goal, based on relationships and attributes in a private database? The answer is no--such capabilities lie beyond current methods. However, this question underscores a critical technical gap that must be addressed. Many high-value applications in areas such as science, security, and e-commerce rely on proprietary knowledge graphs encoding unique structures, relationships, and logical constraints. We introduce a fine-tuning framework for developing Graph-aligned LAnguage Models (GLaM) that transforms a knowledge graph into an alternate text representation with labeled question-answer pairs. We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning. Our methodology leverages the large-language model's generative capabilities to create the dataset and proposes an efficient alternate to retrieval-augmented generation styled methods.
·arxiv.org·
GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding
GQL highlights
GQL highlights
Exciting times for query languages as SC 32 publishes 39075 on GQL, read the highlights article here.
·linkedin.com·
GQL highlights
The new ISO GQL standard is now available
The new ISO GQL standard is now available
After many years of diligent work and thousands of person-hours of detailed reviews, the new ISO GQL standard is now available! This is… | 15 comments on LinkedIn
·linkedin.com·
The new ISO GQL standard is now available
A custom DSPy pipeline integrating with knowledge graphs
A custom DSPy pipeline integrating with knowledge graphs
Sorry to those immersed in DSPy, but this might be the least magical DSPy RAG (retrieval-augmented generation) pipeline you’ve ever seen. The DSPy… | 29 comments on LinkedIn
a custom DSPy pipeline integrating with knowledge graphs
·linkedin.com·
A custom DSPy pipeline integrating with knowledge graphs
RAG, Context and Knowledge Graphs | LinkedIn
RAG, Context and Knowledge Graphs | LinkedIn
Copyright 2024 Kurt Cagle / The Cagle Report There is an interesting tug-of-war going on right now. On one side are the machine learning folks, those who have been harnessing neural networks for a few years.
·linkedin.com·
RAG, Context and Knowledge Graphs | LinkedIn
A stack ranking of REVENUE in the DBMS market
A stack ranking of REVENUE in the DBMS market
The spaghetti has been cooking, and while there's still some work to do, I'm pleased to be able to share the 2024 DBMS Spaghetti chart (covering data from… | 29 comments on LinkedIn
a stack ranking of REVENUE in the DBMS market
·linkedin.com·
A stack ranking of REVENUE in the DBMS market
Decoding Kanji Relationships
Decoding Kanji Relationships
🗣 TALK ALERT for GraphGeeks 🈂 Decoding Kanji Relationships 📅  April 30th 🕘  09:00 am PT | 18:00 CEST Registration 👉  https://lnkd.in/gkwGCczF  👈 Join…
Decoding Kanji Relationships
·linkedin.com·
Decoding Kanji Relationships
RDF community
RDF community
A few years ago we started the "RDF community" to create a vendor-neutral place to discuss RDF, Knowledge Graphs, Semantic Web and Linked Data. I've finally…
·linkedin.com·
RDF community