GraphNews

4343 bookmarks
Custom sorting
Barcelona’s Graph Tech Revolution!
Barcelona’s Graph Tech Revolution!
500 million+ members | Manage your professional identity. Build and engage with your professional network. Access knowledge, insights and opportunities.
·linkedin.com·
Barcelona’s Graph Tech Revolution!
𝐔𝐧𝐥𝐞𝐚𝐬𝐡𝐢𝐧𝐠 𝐭𝐡𝐞 𝐏𝐨𝐰𝐞𝐫 𝐨𝐟 𝐆𝐫𝐚𝐩𝐡 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬: 𝟐𝟓 𝐓𝐨𝐩 𝐏𝐲𝐭𝐡𝐨𝐧 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬, 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬, 𝐓𝐲𝐩𝐞𝐬 𝐚𝐧𝐝 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬
𝐔𝐧𝐥𝐞𝐚𝐬𝐡𝐢𝐧𝐠 𝐭𝐡𝐞 𝐏𝐨𝐰𝐞𝐫 𝐨𝐟 𝐆𝐫𝐚𝐩𝐡 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬: 𝟐𝟓 𝐓𝐨𝐩 𝐏𝐲𝐭𝐡𝐨𝐧 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬, 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬, 𝐓𝐲𝐩𝐞𝐬 𝐚𝐧𝐝 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬
𝐔𝐧𝐥𝐞𝐚𝐬𝐡𝐢𝐧𝐠 𝐭𝐡𝐞 𝐏𝐨𝐰𝐞𝐫 𝐨𝐟 𝐆𝐫𝐚𝐩𝐡 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬: 𝟐𝟓 𝐓𝐨𝐩 𝐏𝐲𝐭𝐡𝐨𝐧 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬, 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬, 𝐓𝐲𝐩𝐞𝐬 𝐚𝐧𝐝… | 27 comments on LinkedIn
·linkedin.com·
𝐔𝐧𝐥𝐞𝐚𝐬𝐡𝐢𝐧𝐠 𝐭𝐡𝐞 𝐏𝐨𝐰𝐞𝐫 𝐨𝐟 𝐆𝐫𝐚𝐩𝐡 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬: 𝟐𝟓 𝐓𝐨𝐩 𝐏𝐲𝐭𝐡𝐨𝐧 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬, 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬, 𝐓𝐲𝐩𝐞𝐬 𝐚𝐧𝐝 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬
Research Graph 101
Research Graph 101
In this article we look at Research Graph as an information model , and an approach to connect and capture the connections between research outputs, researchers and research activities. We explore…
·medium.com·
Research Graph 101
GraphGPT
GraphGPT
🌟GraphGPT🌟 (385 stars in GitHub) is accepted by 🌟SIGIR'24🌟 (only 20.1% acceptance rate)! Thank Yuhao Yang, wei wei, and other co-authors for their precious…
GraphGPT
·linkedin.com·
GraphGPT
The Taxonomy Tortoise and the ML Hare
The Taxonomy Tortoise and the ML Hare
Here is my third blog entry of 2024. In this blog, I consider the slow pace of taxonomy and ontology building vs the rapid pace of machine learning models… | 24 comments on LinkedIn
The Taxonomy Tortoise and the ML Hare
·linkedin.com·
The Taxonomy Tortoise and the ML Hare
Tree-based RAG with RAPTOR and how knowledge graphs can come to the rescue to enhance answer quality.
Tree-based RAG with RAPTOR and how knowledge graphs can come to the rescue to enhance answer quality.
Long-Context models, such as Google Gemini Pro 1.5 or Large World Model, are probably changing the way we think about RAG (retrieval-augmented generation)… | 12 comments on LinkedIn
, how knowledge graphs can come to the rescue to enhance answer quality.
·linkedin.com·
Tree-based RAG with RAPTOR and how knowledge graphs can come to the rescue to enhance answer quality.
Why Graphs? Graph databases are the most powerful tools for managing data because of their structure and flexibility. Here are 6 reasons why
Why Graphs? Graph databases are the most powerful tools for managing data because of their structure and flexibility. Here are 6 reasons why
Why Graphs? Graph databases are the most powerful tools for managing data because of their structure and flexibility. Here are 6 reasons why: 1. They are…
Why Graphs? Graph databases are the most powerful tools for managing data because of their structure and flexibility. Here are 6 reasons why
·linkedin.com·
Why Graphs? Graph databases are the most powerful tools for managing data because of their structure and flexibility. Here are 6 reasons why
Jensen Huang in his keynote at NVIDIA GTC24 calls out three sources of data to integrate with LLMs: 1) vector databases, 2) ERP / CRM and 3) knowledge graphs
Jensen Huang in his keynote at NVIDIA GTC24 calls out three sources of data to integrate with LLMs: 1) vector databases, 2) ERP / CRM and 3) knowledge graphs
Wow, in Jensen Huang (CEO) his keynote at NVIDIA #GTC24, he calls out three sources of data to integrate with LLMs: 1) vector databases, 2) ERP / CRM and 3)…
Jensen Huang (CEO) his keynote at NVIDIA hashtag#GTC24, he calls out three sources of data to integrate with LLMs: 1) vector databases, 2) ERP / CRM and 3) *knowledge graphs*
·linkedin.com·
Jensen Huang in his keynote at NVIDIA GTC24 calls out three sources of data to integrate with LLMs: 1) vector databases, 2) ERP / CRM and 3) knowledge graphs
Kurt Cagle chatbot on Knowledge Graphs, Ontology, GenAI and Data
Kurt Cagle chatbot on Knowledge Graphs, Ontology, GenAI and Data
I want to thank Jay (JieBing) Yu, PhD for his hard work in creating a Mini-Me (https://lnkd.in/g6TR543j), a virtual assistant built on his fantastic LLM work…
Kurt is one of my favorite writers, a seasoned practitioner and deep thinker in the areas of Knowledge Graphs, Ontology, GenAI and Data
·linkedin.com·
Kurt Cagle chatbot on Knowledge Graphs, Ontology, GenAI and Data
Towards Graph Foundation Models for Personalization
Towards Graph Foundation Models for Personalization
In the realm of personalization, integrating diverse information sources such as consumption signals and content-based representations is becoming increasingly critical to build state-of-the-art solutions. In this regard, two of the biggest trends in research around this subject are Graph Neural Networks (GNNs) and Foundation Models (FMs). While GNNs emerged as a popular solution in industry for powering personalization at scale, FMs have only recently caught attention for their promising performance in personalization tasks like ranking and retrieval. In this paper, we present a graph-based foundation modeling approach tailored to personalization. Central to this approach is a Heterogeneous GNN (HGNN) designed to capture multi-hop content and consumption relationships across a range of recommendable item types. To ensure the generality required from a Foundation Model, we employ a Large Language Model (LLM) text-based featurization of nodes that accommodates all item types, and construct the graph using co-interaction signals, which inherently transcend content specificity. To facilitate practical generalization, we further couple the HGNN with an adaptation mechanism based on a two-tower (2T) architecture, which also operates agnostically to content type. This multi-stage approach ensures high scalability; while the HGNN produces general purpose embeddings, the 2T component models in a continuous space the sheer size of user-item interaction data. Our comprehensive approach has been rigorously tested and proven effective in delivering recommendations across a diverse array of products within a real-world, industrial audio streaming platform.
·arxiv.org·
Towards Graph Foundation Models for Personalization