Neural algorithmic reasoning without intermediate supervision
Neural algorithmic reasoning focuses on building models that can execute classic algorithms. It allows one to combine the advantages of neural networks, such as handling raw and noisy input data, with theoretical guarantees and strong generalization of algorithms. Assuming we have a neural network capable of solving a classic algorithmic task, we can incorporate it into a more complex pipeline and train end-to-end. For instance, if we have a neural solver aligned to the shortest path problem, it can be used as a building block for a routing system that accounts for complex and dynamically changing traffic conditions. In our work [ref1], we study algorithmic reasoners trained only from input-output pairs, in contrast to current state-of-the-art approaches that utilize the trajectory of a given algorithm. We propose several architectural modifications and demonstrate how standard contrastive learning techniques can regularize intermediate computations of the models without appealing to any predefined algorithm’s trajectory.