GraphNews

3951 bookmarks
Custom sorting
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"How can we learn world models that endow agents with the ability to do temporally extended reasoning?" World Model as a Graph: Learning Latent Landmarks for Planning https://t.co/ifSa6j2uYJ pic.twitter.com/yWnuchuBI4— Aaron Bradley (@aaranged) December 8, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources https://t.co/JsMcHN8Z6g pic.twitter.com/IxbRmK4ioo— Aaron Bradley (@aaranged) December 8, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"... we argue that to date there are no effective solutions for supporting developers' decision-making process when deciding on an ontology reuse strategy" > The Landscape of Ontology Reuse Approaches @vale_carriero et al. https://t.co/LTqn85wv26 pic.twitter.com/AwjVPUDYk7— Aaron Bradley (@aaranged) December 8, 2020
·twitter.com·
Aaron Bradley on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Hunters, busybodies, and the knowledge network building associated with curiosity": constructing networks of Wikipedia readers' exploration to capture differences in curiosity practice and information-seeking mechanisms.(Lydon-Staley et al, 2020)https://t.co/DVSuAB2jSQ pic.twitter.com/Jf9QtIkTsz— WikiResearch (@WikiResearch) December 8, 2020
·twitter.com·
WikiResearch on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Put your business rules in an EKG? No Y/N answer from @dmccreary but he sez "be aware of the fact that there are many benefits to treating your rules as data, making them searchable, making them reusable, and tracking rules execution in a knowledge graph." https://t.co/Uvlc5YBNuV— Aaron Bradley (@aaranged) December 9, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Towards a Shared Peer-Review Taxonomy: An interview with Joris van Rossum and Lois Jones https://t.co/VQ0C807Rms pic.twitter.com/wGls0T8QKC— cbaumle (@cbaumle) December 10, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"We present ten simple rules that support converting a legacy vocabulary - a list of terms available in a print-based glossary or table not accessible using web standards - into a FAIR vocabulary." https://t.co/5Jby0iXAXU pic.twitter.com/c2ovJjiAd5— Aaron Bradley (@aaranged) December 10, 2020
·twitter.com·
Aaron Bradley on Twitter
Adrian Gschwend on Twitter
Adrian Gschwend on Twitter
"https://t.co/u85cjjArgc’s primary focus is people—individuals who were enslaved, owned slaves, or participated in slave trading."Data curated in RDF, you can browse the resources and get RDF out of it. I could not find a SPARQL endpoint yet https://t.co/jwjDtYnhsD— Adrian Gschwend (@linkedktk) December 11, 2020
·twitter.com·
Adrian Gschwend on Twitter
Petar Veličković on Twitter
Petar Veličković on Twitter
As requested , here are a few non-exhaustive resources I'd recommend for getting started with Graph Neural Nets (GNNs), depending on what flavour of learning suits you best. Covering blogs, talks, deep-dives, feeds, data, repositories, books and university courses! A thread 👇 pic.twitter.com/el1kb8rS4G— Petar Veličković (@PetarV_93) September 17, 2020
·twitter.com·
Petar Veličković on Twitter
The Linked Commons 2.0: What's New?
The Linked Commons 2.0: What's New?
We've made it even easier (and fun!) to explore the relationships between the millions of CC-licensed content sprawled across the web.
·creativecommons.org·
The Linked Commons 2.0: What's New?
WikiResearch on Twitter
WikiResearch on Twitter
Upcoming at @emnlp2020:@danaikoutra and @tararootcake present CoDEx, a set of knowledge graph completion datasets extracted from @wikidata and @Wikipedia that improve upon existing knowledge graph completion benchmarks inscope & difficulty.https://t.co/YrZA4ac5GR— MichiganAI (@michigan_AI) November 13, 2020
·twitter.com·
WikiResearch on Twitter
Neo4j on Twitter
Neo4j on Twitter
Very, very cool:Using Neo4j with PySpark on Databricks https://t.co/CHKZTJSDXh#databricks #ApacheSpark #Neo4j pic.twitter.com/hcx69I6Hgx— Niels Berglund (@nielsberglund) November 18, 2020
·twitter.com·
Neo4j on Twitter
Graph Day on Twitter
Graph Day on Twitter
From Knowledge Graphs to Knowledge Categories. @joshsh interviews Ryan Wisnesky of @ConexusAI for @TheGraphShow https://t.co/b1dxpdrBoh #knowledgegraphs #categorytheory #RDF #tinkerpop pic.twitter.com/wUpILFIV5z— Graph Day (@GraphDay) November 18, 2020
·twitter.com·
Graph Day on Twitter
Maatari Okouya on Twitter
Maatari Okouya on Twitter
How can we gain maximum utility from a sophisticated ontology engineering such as #FIBO? @kptyson tells us how - by applying property paths combined w/ reasoning. Such techniques are useful for quality assuring large, complex ontologies & #knowledgegraphs. https://t.co/ZSfOVj5M1k— Ontotext (@ontotext) November 17, 2020
·twitter.com·
Maatari Okouya on Twitter
JYOTI RANJAN PANDA 👷 on Twitter
JYOTI RANJAN PANDA 👷 on Twitter
In this publication, Amazon scientists present the COVID-19 Knowledge Graph (CKG), a heterogeneous graph for extracting and visualizing complex relationships between COVID-19 scientific articles. Learn more: https://t.co/gmLEXJo48m #AmazonScience #COVID19 #KnowledgeGraphs pic.twitter.com/CzugJUhjs3— Amazon Science (@AmazonScience) November 16, 2020
·twitter.com·
JYOTI RANJAN PANDA 👷 on Twitter
Neo4j on Twitter
Neo4j on Twitter
What is common between BOMs and Graphs and why @openbom is using Neo4j https://t.co/xukMrCD1gE pic.twitter.com/oiwNPJwh1t— openbom (@openbom) November 20, 2020
·twitter.com·
Neo4j on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Ontology-driven Event Type Classification in Images" exploit structured information from #Wikidata to learn relevant event relations using deep neural networks. (Müller-Budack et al, 2020)https://t.co/fUFEN6wBqI@sherzodhakimov pic.twitter.com/CKyMMOKMaW— WikiResearch (@WikiResearch) November 19, 2020
·twitter.com·
WikiResearch on Twitter
stephen mallette on Twitter
stephen mallette on Twitter
Here's my first blog post for Amazon Neptune which discusses the new features it supports with its recent inclusion of @apachetinkerpop 3.4.8. #graphdb https://t.co/ImzR2rFIfX pic.twitter.com/EeHOR5k2xF— stephen mallette (@spmallette) November 18, 2020
·twitter.com·
stephen mallette on Twitter
Francesco Osborne on Twitter
Francesco Osborne on Twitter
Our chapter "#Ontology Extraction and Usage in the Scholarly Knowledge Domain" is now available in the book "Applications and Practices in Ontology Design, Extraction, and Reasoning". Using #MachineLearning to learn #KnowledgeGraphs of Science. Preprint: https://t.co/cWnnAihZUo https://t.co/gexnP0PSBq pic.twitter.com/bU363igotd— Francesco Osborne (@FraOsborne) November 23, 2020
·twitter.com·
Francesco Osborne on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
These remarks cribbed from an talk that ended with the words "Launching the CCC Knowledge Graph", so another named enterprise knowledge graph coming our way soon, I guess. https://t.co/z9eIDO01yg— Aaron Bradley (@aaranged) November 23, 2020
·twitter.com·
Aaron Bradley on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Fact-checking via Path Embedding and Aggregation", over Wikidata and DBPedia.(Pirro', 2020)https://t.co/opnd01It06 pic.twitter.com/b1IN7WomSA— WikiResearch (@WikiResearch) November 23, 2020
·twitter.com·
WikiResearch on Twitter
Adrian Gschwend on Twitter
Adrian Gschwend on Twitter
I say for some years that graph scaling is solved by throwing enough hardware at it and I'm VERY excited to hear we might even get dedicated "graph" hardware for it in the future! Great explanation! https://t.co/6XoAI3VOD2— Adrian Gschwend (@linkedktk) November 23, 2020
·twitter.com·
Adrian Gschwend on Twitter
Yuri Simione on Twitter
Yuri Simione on Twitter
Leading enterprise #knowledgegraph provider @StardogHQ announces Stardog Cloud industry's first #cloud native offering enables organizations to transform enterprise data infrastructure into a comprehensive end-to-end #datafabric— Yuri Simione (@artika4biz) November 22, 2020
·twitter.com·
Yuri Simione on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Who killed Lilly Kane? A case study in applying knowledge graphs to crime fiction https://t.co/hxdwBmvCKV pic.twitter.com/M2oOmtcB7G— Aaron Bradley (@aaranged) November 25, 2020
·twitter.com·
Aaron Bradley on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Linking OpenStreetMap with Knowledge Graphs - Link Discovery for Schema-Agnostic Volunteered Geographic Information", using Wikidata and DBPedia.(Tempelmeier and Demidova, 2020)https://t.co/VAxB6fsxEb pic.twitter.com/OwKtzY9C59— WikiResearch (@WikiResearch) November 25, 2020
·twitter.com·
WikiResearch on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
👉 bbw is our new semantic annotator matching tabular data with #Wikidata knowledge graph via meta-lookup.It is Open Source https://t.co/VaTZHoaodH and comes with reproducible binder links https://t.co/VwJzkh4Og7 resp. https://t.co/ynlXEl1awM. Try it out! pic.twitter.com/ZoedYVPJUM— Philipp Zumstein (@zuphilip) November 24, 2020
·twitter.com·
Aaron Bradley on Twitter