No Clocks

No Clocks

2584 bookmarks
Newest
Regrid - United States
Regrid - United States
Nationwide property data and mapping tools for everyone. Surf 159 million land parcels on our map or license them for yours.
·app.regrid.com·
Regrid - United States
shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into Reproducible Workflows
shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into Reproducible Workflows
The R package shinymgr provides a unifying framework that allows Shiny developers to create, manage, and deploy a master Shiny application comprised of one or more "apps", where an "app" is a tab-based workflow that guides end-users through a step-by-step analysis. Each tab in a given "app" consists of one or more Shiny modules. The shinymgr app builder allows developers to "stitch" Shiny modules together so that outputs from one module serve as inputs to the next, creating an analysis pipeline that is easy to implement and maintain. Apps developed using shinymgr can be incorporated into R packages or deployed on a server, where they are accessible to end-users. Users of shinymgr apps can save analyses as an RDS file that fully reproduces the analytic steps and can be ingested into an RMarkdown or Quarto report for rapid reporting. In short, developers use the shinymgr framework to write Shiny modules and seamlessly combine them into Shiny apps, and end-users of these apps can execute reproducible analyses that can be incorporated into reports for rapid dissemination. A comprehensive overview of the package is provided by 12 learnr tutorials.
·journal.r-project.org·
shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into Reproducible Workflows
Futureverse
Futureverse
A Unifying Parallelization Framework in R for Everyone
·futureverse.org·
Futureverse
Introduction
Introduction
Build production-ready Copilots and Agents effortlessly.
·docs.copilotkit.ai·
Introduction
RealEstateAPI Developer Documentation
RealEstateAPI Developer Documentation
THE Property Data Solution. Our revolutionary tech allows us to get you property and owner data (and lots of it!) faster and cheaper than you've ever been able to before. Slow or buggy applications due to unreliable third party data APIs are a problem of the past.
·developer.realestateapi.com·
RealEstateAPI Developer Documentation
How to make data pipelines idempotent
How to make data pipelines idempotent
Unable to find practical examples of idempotent data pipelines? Then, this post is for you. In this post, we go over a technique that you can use to make your data pipelines professional and data reprocessing a breeze.
·startdataengineering.com·
How to make data pipelines idempotent
Shell and A.I - Steven Bucher - PSConfEU 2024
Shell and A.I - Steven Bucher - PSConfEU 2024
In this extensive lecture, I, Steven Bucher, a product manager on the PowerShell team, discuss the integration of AI into the shell environment. Over the pas...
·youtu.be·
Shell and A.I - Steven Bucher - PSConfEU 2024
AI Database Generator
AI Database Generator
AI Database Generator is a sophisticated tool that utilizes artificial intelligence and machine learning algorithms to automate the design and creation of database schemas.
·databasesample.com·
AI Database Generator
Rentometer: Rentometer API Docs
Rentometer: Rentometer API Docs
Get a quick rent estimate by address or zip code with Rentometer. Compare rental rates and comps to ensure you're pricing your property right.
·rentometer.com·
Rentometer: Rentometer API Docs
autodb: Automatic Database Normalisation for Data Frames
autodb: Automatic Database Normalisation for Data Frames
Automatic normalisation of a data frame to third normal form, with the intention of easing the process of data cleaning. (Usage to design your actual database for you is not advised.) Originally inspired by the 'AutoNormalize' library for 'Python' by 'Alteryx' (<a href="https://github.com/alteryx/autonormalize" target="_top"https://github.com/alteryx/autonormalize/a>), with various changes and improvements. Automatic discovery of functional or approximate dependencies, normalisation based on those, and plotting of the resulting "database" via 'Graphviz', with options to exclude some attributes at discovery time, or remove discovered dependencies at normalisation time.
·cran.r-project.org·
autodb: Automatic Database Normalisation for Data Frames
Access, retrieve, and work with CMHC data.
Access, retrieve, and work with CMHC data.
Wrapper around the Canadian Mortgage and Housing Corporation (CMHC) web interface. It enables programmatic and reproducible access to a wide variety of housing data from CMHC.
·mountainmath.github.io·
Access, retrieve, and work with CMHC data.
HelloData - Full Product Demo (6-3-2024)
HelloData - Full Product Demo (6-3-2024)
Power your multifamily rent surveys with real-time data on over 25M units nationwide, sourced entirely from property websites and public data sources.
·youtu.be·
HelloData - Full Product Demo (6-3-2024)
Data Pipeline Design Patterns - #1. Data flow patterns
Data Pipeline Design Patterns - #1. Data flow patterns
Data pipelines built (and added on to) without a solid foundation will suffer from poor efficiency, slow development speed, long times to triage production issues, and hard testability. What if your data pipelines are elegant and enable you to deliver features quickly? An easy-to-maintain and extendable data pipeline significantly increase developer morale, stakeholder trust, and the business bottom line! Using the correct design pattern will increase feature delivery speed and developer value (allowing devs to do more in less time), decrease toil during pipeline failures, and build trust with stakeholders. This post goes over the most commonly used data flow design patterns, what they do, when to use them, and, more importantly, when not to use them. By the end of this post, you will have an overview of the typical data flow patterns and be able to choose the right one for your use case.
·startdataengineering.com·
Data Pipeline Design Patterns - #1. Data flow patterns