No Clocks

No Clocks

2707 bookmarks
Custom sorting
Crafting Intelligent User Experiences: A Deep Dive into OpenAI Assistants API
Crafting Intelligent User Experiences: A Deep Dive into OpenAI Assistants API
Elevate, Enhance, and Empower your apps with Assistants APIs and Tools
What’s an OpenAI Assistant? Think of it as a software glue that affords you to gel together agent-like capabilities in your applications to conduct tasks expressed as instructions in natural language to an Assistant. Able to understand instructions, it can leverage OpenAI’s SOTA models and tools to carry out tasks. With Assistants stateful API, you can create Assistants within your application, providing you access to three types of supported tools: Code Interpreter, Retrieval, and Function calling [5]. At the core it has few concepts and components that cogently interact together, to enable agent-like capabilities.
Assistants API, concepts, components, and tools Unfortunately, OpenAI documentation falls short in explaining or illustrating these components into finer details and showing how they work together. Randy Michak of Empowerment AI does a fine job of dissecting these core components and illustrating their flow and data interactions [7]. Inspired by Michak, I mildly modified Figure 4, showing dynamic interaction and data flowing among Assistants API components.
To get started with Assistants, the OpenAI guide stipulates four simple steps to use the Assistants API to glue together these core components for coordination [8]. Step 1: Create an Assistant, to declare a custom model and provide instructions for the Assistant. This helps the Assistant to elect the appropriate supported tool to employ. Step 2: Create a Thread, a stateful session for the Assistant to retrieve messages from and add Assistant messages to. Step 3: Use the Thread as a conversational session to add messages for the assistants to consume. Step 4: Run the Assistant on a newly added Thread message to trigger responses. This run is Assistant’s asynchronous runtime environment.
How does it all work together?
Let’s methodically walk through a simple example where we want to accomplish the following: Integrate Assistants API, using Retrieval tool, to a) upload a couple of pdf documents and b) use an Assistant to query the contents of the document. Consider this as a mini Retrieval Augmented Generation (RAG) application. Use Files objects to upload the pdf files so that the Assistant can access them. Create and employ the Assistant, Threads, Messages, and Run objects to query the uploaded pdf documents. Coordinate all these concrete objects to interact and interplay together as part of my application.
Step 1: Create File objects as our knowledge base Upload your PDFs in the retrievers’ database, using a File object. The Assistants API breaks them into parts, as chunks, and saves them, as indexes and vector embeddings. When you ask a question, Retrievers find the best matches and help the Assistant give you a detailed answer, just like a big RAG retriever.
Step 2: Create an Assistant object. To use an Assistant and conduct tasks, first, create an AI Assistant object. Supply the Assistant with a model, instructional behavior, tools to use, and file IDs to employ for its knowledge base, as parameters.
·ai.gopubby.com·
Crafting Intelligent User Experiences: A Deep Dive into OpenAI Assistants API
OpenAI Platform - Assistants API
OpenAI Platform - Assistants API
Explore developer resources, tutorials, API docs, and dynamic examples to get the most out of OpenAI's platform.
An Assistant represents an entity that can be configured to respond to a user's messages using several parameters like model, instructions, and tools.
·platform.openai.com·
OpenAI Platform - Assistants API
API Documentation Using Hacker Tools Mitmproxy2swagger
API Documentation Using Hacker Tools Mitmproxy2swagger
Discover mitmproxy2swagger: A quick solution to generate API documentation, bridging the gap between backend and frontend teams effortlessly in just 2 mins
API documentation is a collection of references, tutorials, documents, or videos that help developers use your API governed by the Open API Specification(OAS). An API(Application programming interface) is a data-sharing technique that helps applications communicate with each other. Not the best definition in the world but I like to think of an API as a dynamic messenger. They can store your message, process it, and also deliver it to multiple people. They are also responsible for the security of your message until it reaches you.
There are a lot of tools in the market used to produce great documentation; Swagger, Postman, Doxygen, ApiDoc, and Document360 just to name a few. However, most developers remain oblivious to the tools developed for reconnaissance which when you interact with them are useful to developers as well.
mitmproxy2swagger
mitmweb is a component of the mitmproxy project and it will serve to intercept the requests that will be channeled to the listener port opened at 8080
Next, we'll need to configure the requests source for which we'll use Postman
Next, click on the gear icon at the top right corner of the postman interface to access the settings
On the settings pop up select proxy and then toggle use custom proxy configuration Here we'll add the proxy listener port so that Postman can channel all request through out custom proxy from mitmproxy
·muriithigakuru.hashnode.dev·
API Documentation Using Hacker Tools Mitmproxy2swagger
Reverse Engineer an API using MITMWEB and POSTMAN and create a Swagger file (crAPI)
Reverse Engineer an API using MITMWEB and POSTMAN and create a Swagger file (crAPI)
Many times when the we are trying to Pentest an API we might not get access to Swagger file or the documentations of the API, Today we will…
Many times when the we are trying to Pentest an API we might not get access to Swagger file or the documentations of the API, Today we will try to create the swagger file using Mitmweb and Postman.
Man in The Midlle Proxy (MITMweb)
run mitmweb through our command line in Kali
and as we can see it starts to listen on the port 8080 for http/https traffic, and we will make sure that its running by navigating to the above address which is the localhost at port 8081
and then we will proxy our traffic thorugh Burp Suite proxy port 8080 because we already has mitmweb listening for this port (make sure Burp is closed)
and then we will stop the capture and use mitmproxy2swagger to analyse it
·medium.com·
Reverse Engineer an API using MITMWEB and POSTMAN and create a Swagger file (crAPI)
Colormind blog
Colormind blog
The Colormind has a REST API that allows you to build applications with beautiful generated color palettes
·colormind.io·
Colormind blog
The most efficient way to manage snapshot tests in R.
The most efficient way to manage snapshot tests in R.
Use CI and Github API
Snapshot testing gets difficult when there is more than one variant of the same result. The reason why snapshot testing might be discouraging is due to the fact that snapshots will most likely fail due to environment settings. If one person runs the tests on a Mac and another on a Linux machine, the snapshots of rendered images will almost certainly be different. Comparing these snapshots will result in a failed test even though the code is correct. Add CI to the mix, and you have a hot mess.
The easiest solution is to introduce variants. Variants are versions of snapshots which were created on different environments. In {testthat} variants are stored in separate directories. You can pass a name of the variant to the variant argument of testthat::test_snapshot. If you have a Linux, set variant = "linux", if you have a Mac, set variant = "mac".
Use snapshots generated on CI as the source of truth. Don’t check in snapshots generated on your machine. Generate them on CI and download them to your machine instead.
Step 1: Archive snapshots on CI Add this step to you CI testing workflow to allow downloading generated snapshots.
- name: Archive test snapshots if: always() uses: actions/upload-artifact@v3 with: name: test-snapshots path: | tests/testthat/_snaps/**/**/*
Step 2: Detect the environment to create variants We can create a make_variant function to detect the version of the platform, as well as if we are running on CI. This way even if we use the same OS on CI and locally, we can still differentiate between snapshots generated on CI and locally.
#' tests/testthat/setup.R is_ci <- function() { isTRUE(as.logical(Sys.getenv("CI"))) } make_variant <- function(platform = shinytest2::platform_variant()) { ci <- if (is_ci()) "ci" else NULL paste(c(ci, platform), collapse = "-") } # In tests: testthat::expect_snapshot(..., variant = make_variant())
Step 3: Ignore your local snapshots Don’t check in snapshots generated on your machine. Add them to .gitignore instead. Copy tests/testthat/_snaps/linux-4.4 This way we can still generate snapshots locally to get fast feedback, but we’ll only keep a single source of truth checked in the repository. Since you don’t track changes in local snapshots, you need to regenerate them before you start making changes to see if they change. It adds some complexity to the process, but it allows to keep the number of shared snapshots in the version control minimal. Alternatively, you can keep local snapshots, but when doing code review, focus only on the ones generated on CI.
Step 4: Automate downloading snapshots from CI To update snapshots generated on CI in Github, we need to: Go to Actions. Find our workflow run. Download the test-snapshots artifact. Unpack and overwrite the local snapshots. testthat::snapshot_review() to review the changes. Commit and push the changes. This is a lot of steps. We can automate the most laborious ones with Github API.
The .download_ci_snaps function will: Get the list of artifacts in the repository identified by repo and owner. It’ll search workflows generated from the branch we’re currently on. It will download the latest artifact with the provided name (in our case its “test-snapshots”) in the repository Unzip them and overwrite the local copy of snapshots.
·jakubsob.github.io·
The most efficient way to manage snapshot tests in R.
A Database Model for an Online Survey. Part 4
A Database Model for an Online Survey. Part 4
In this final article in a four-part series, I complete the design for an online survey database to provide flexibility for multiple surveys, question re-use, multiple choice answers, ordering of questions, conditional jumps in the survey based on responses, and control over the users' access to surveys via groups of survey owners.
·vertabelo.com·
A Database Model for an Online Survey. Part 4
Prompt Storm - A Powerful Easy to use Artificial Intelligence Prompt Engineering Chrome Software Extension for ChatGPT, Google's Gemini, and Anthropic's Claude.
Prompt Storm - A Powerful Easy to use Artificial Intelligence Prompt Engineering Chrome Software Extension for ChatGPT, Google's Gemini, and Anthropic's Claude.
Prompt Storm - A Powerful Easy to use AI Prompt Engineering Chrome Extension for ChatGPT, Google's Gemini, and Anthropic's Claude. With just a few clicks you can get the answers you're looking for, create amazing writing, marketing and social media strategies, save time and boost your productivity.
·promptstorm.app·
Prompt Storm - A Powerful Easy to use Artificial Intelligence Prompt Engineering Chrome Software Extension for ChatGPT, Google's Gemini, and Anthropic's Claude.
HTTP resources and specifications - HTTP | MDN
HTTP resources and specifications - HTTP | MDN
HTTP was first specified in the early 1990s. Designed with extensibility in mind, it has seen numerous additions over the years; this lead to its specification being scattered through numerous specification documents (in the midst of experimental abandoned extensions). This page lists relevant resources about HTTP.
·developer.mozilla.org·
HTTP resources and specifications - HTTP | MDN