Research

Research

61152 bookmarks
Custom sorting
The arc of transformation | "Visual Storytelling for Animation Projects" (luis_angel_esparza) | Domestika
The arc of transformation | "Visual Storytelling for Animation Projects" (luis_angel_esparza) | Domestika
The arc of transformation - a Visual Storytelling for Animation Projects course. In this lesson you will define an initial and final point for your protagonist, in addition to some (or some) antagonistic forces that help him achieve it.
·domestika.org·
The arc of transformation | "Visual Storytelling for Animation Projects" (luis_angel_esparza) | Domestika
Immortal Machinations: Arc of Transformation (Volume 1): Patterson, Violet: 9781501094767: Amazon.com: Books
Immortal Machinations: Arc of Transformation (Volume 1): Patterson, Violet: 9781501094767: Amazon.com: Books
As long as man has walked the Earth there has been an internal drive to evolve, a hunger for progress. From this craving the Illuminati were born. The secret society swore to protect and pursue the most impressive intellectual property of each generation, building upon it to perfect every new inv...
·amazon.com·
Immortal Machinations: Arc of Transformation (Volume 1): Patterson, Violet: 9781501094767: Amazon.com: Books
Arc / Curve Transformation in Ruby - Developers / Ruby API - SketchUp Community
Arc / Curve Transformation in Ruby - Developers / Ruby API - SketchUp Community
Hi all, Im 'trying to transform a component by a vector. Its work perfectly when they aren’t arc in the entities. On the following image, you can see the result. The initial vertex are represente by a cpoint the vector by the cline if I didn’t explode the arc , I have the following result: I try with entities.transform_by_vectors entities_to_move, vector and transform = Geom::Transformation.new vector entities.transform_entities(transform,entities_to_move.to_a) And I have the sa...
·forums.sketchup.com·
Arc / Curve Transformation in Ruby - Developers / Ruby API - SketchUp Community
Haircut Tutorials – "transformation" – ARC™ Scissors
Haircut Tutorials – "transformation" – ARC™ Scissors
ARC™ Scissors are the highest quality Japanese scissors, handcrafted by master smiths in Japan who are as passionate about making scissors as you are about cutting hair. When it comes to handcrafting scissors for professional hairstylists, ARC™ Scissors refuses to take any shortcuts—and that’s what sets ARC™ apart.
·arcscissors.com·
Haircut Tutorials – "transformation" – ARC™ Scissors
Use of the λ Red-recombineering method for genetic engineering of Pantoea ananatis | BMC Molecular Biology | Full Text
Use of the λ Red-recombineering method for genetic engineering of Pantoea ananatis | BMC Molecular Biology | Full Text
Background Pantoea ananatis, a member of the Enterobacteriacea family, is a new and promising subject for biotechnological research. Over recent years, impressive progress in its application to L-glutamate production has been achieved. Nevertheless, genetic and biotechnological studies of Pantoea ananatis have been impeded because of the absence of genetic tools for rapid construction of direct mutations in this bacterium. The λ Red-recombineering technique previously developed in E. coli and used for gene inactivation in several other bacteria is a high-performance tool for rapid construction of precise genome modifications. Results In this study, the expression of λ Red genes in P. ananatis was found to be highly toxic. A screening was performed to select mutants of P. ananatis that were resistant to the toxic affects of λ Red. A mutant strain, SC17(0) was identified that grew well under conditions of simultaneous expression of λ gam, bet, and exo genes. Using this strain, procedures for fast introduction of multiple rearrangements to the Pantoea ananatis genome based on the λ Red-dependent integration of the PCR-generated DNA fragments with as short as 40 bp flanking homologies have been demonstrated. Conclusion The λ Red-recombineering technology was successfully used for rapid generation of chromosomal modifications in the specially selected P. ananatis recipient strain. The procedure of electro-transformation with chromosomal DNA has been developed for transfer of the marked mutation between different P. ananatis strains. Combination of these techniques with λ Int/Xis-dependent excision of selective markers significantly accelerates basic research and construction of producing strains.
·bmcmolbiol.biomedcentral.com·
Use of the λ Red-recombineering method for genetic engineering of Pantoea ananatis | BMC Molecular Biology | Full Text
Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases
Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases
Lambda Red recombineering is a powerful technique for making targeted genetic changes in bacteria. However, many applications are limited by the frequency of recombination. Previous studies have suggested that endogenous nucleases may hinder recombination by degrading the exogenous DNA used for recombineering. In this work, we identify ExoVII as a nuclease which degrades the ends of single-stranded DNA (ssDNA) oligonucleotides and double-stranded DNA (dsDNA) cassettes. Removing this nuclease improves both recombination frequency and the inheritance of mutations at the 3′ ends of ssDNA and dsDNA. Extending this approach, we show that removing a set of five exonucleases (RecJ, ExoI, ExoVII, ExoX, and Lambda Exo) substantially improves the performance of co-selection multiplex automatable genome engineering (CoS-MAGE). In a given round of CoS-MAGE with ten ssDNA oligonucleotides, the five nuclease knockout strain has on average 46% more alleles converted per clone, 200% more clones with five or more allele conversions, and 35% fewer clones without any allele conversions. Finally, we use these nuclease knockout strains to investigate and clarify the effects of oligonucleotide phosphorothioation on recombination frequency. The results described in this work provide further mechanistic insight into recombineering, and substantially improve recombineering performance.
·journals.plos.org·
Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli | Applied and Environmental Microbiology
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli | Applied and Environmental Microbiology
ABSTRACT To date, most genetic engineering approaches coupling the type II Streptococcus pyogenes clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system to lambda Red recombineering have involved minor single nucleotide mutations. ...
·journals.asm.org·
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli | Applied and Environmental Microbiology