Found 2 bookmarks
Custom sorting
A Survey of Graph Meets Large Language Model: Progress and Future Directions
A Survey of Graph Meets Large Language Model: Progress and Future Directions
Graph plays a significant role in representing and analyzing complex relationships in real-world applications such as citation networks, social networks, and biological data. Recently, Large Language Models (LLMs), which have achieved tremendous success in various domains, have also been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods and yield state-of-the-art performance. In this survey, we first present a comprehensive review and analysis of existing methods that integrate LLMs with graphs. First of all, we propose a new taxonomy, which organizes existing methods into three categories based on the role (i.e., enhancer, predictor, and alignment component) played by LLMs in graph-related tasks. Then we systematically survey the representative methods along the three categories of the taxonomy. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. The relevant papers are summarized and will be consistently updated at: https://github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks.
·arxiv.org·
A Survey of Graph Meets Large Language Model: Progress and Future Directions
Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot
Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot
Regardless of recent advances, humanoid robots still face significant difficulties in performing locomotion tasks. Among the key challenges that must be addressed to achieve robust bipedal locomotion are dynamically consistent motion planning, feedback control, and state estimation of such complex systems. In this paper, we investigate the use of an external motion capture system to provide state feedback to an online whole-body controller. We present experimental results with the humanoid robot RH5 performing two different whole-body motions: squatting with both feet in contact with the ground and balancing on one leg. We compare the execution of these motions using state feedback from (i) an external motion tracking system and (ii) an internal state estimator based on inertial measurement unit (IMU), forward kinematics, and contact sensing. It is shown that state-of-the-art motion capture systems can be successfully used in the high-frequency feedback control loop of humanoid robots, providing an alternative in cases where state estimation is not reliable.
·mdpi.com·
Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot