Turning the Body Into a Wire - IEEE Spectrum
The Quest to Use Quantum Mechanics to Pull Energy out of Nothing
The quantum energy teleportation protocol was proposed in 2008 and largely ignored. Now two independent experiments have shown that it works.
Quantum Computing
Practical quantum computing. Delivered over the cloud.
Building the operating system for quantum computers - Riverlane
Riverlane's mission is to make quantum computing useful far sooner than previously imaginable, starting an era of human progress as significant as the industrial and digital revolutions.
Quantum Compression
A blind quantum audio watermarking based on quantum discrete cosine transform
As an important security technology, recently quantum watermarking attracted wide research attention. This study presents a blind quantum audio waterm…
QRDA: Quantum Representation of Digital Audio
Download Citation | QRDA: Quantum Representation of Digital Audio | Multimedia refers to content that uses a combination of different content forms. It includes two main medias: image and audio. However, by... | Find, read and cite all the research you need on ResearchGate
Quantum Representation of Digital Audio
Quantum Image Teleportation Protocol (QITP) and Quantum Audio Teleportation Protocol (QATP) by using Quantum Teleportation and Huffman Coding | IEEE Conference Publication | IEEE Xplore
In order to transmit images and audio securely, the authors present the Quantum Image Teleportation Protocol (QITP) and Quantum Audio Teleportation Protocol (QATP), which utilizes the Quantum Teleportation (QT) technique combined with Huffman Coding. The QITP secures the teleportation of quantum states of an image while simultaneously encrypting and decrypting them using Huffman Coding since it is only possible to recover or decode data if the prefix codes are known. To test their approach, the authors transformed pixels or RGB values from digital images into text, which was then fed into the Huffman Coding Technique. It has the advantage of compressing the entire text, which makes it faster to transmit vast amounts of information. This work also demonstrates the Quantum Audio Teleportation Protocol (QATP) with and without Huffman coding. For proof of concept, experimental evaluations were performed for both suggested QITPs and QATPs (Standard QITP, QITP with Huffman Coding, Standard QATP, QATP with Huffman Coding), using IBM Quantum Assembly Language (IBM QASM) Simulator and real quantum hardware using the Quantum Information Science Kit (Qiskit), a quantum computing platform.
Adaptive Quantum Lossless Compression
Classical and quantum compression for edge computing: the ubiquitous data dimensionality reduction
Edge computing aims to address the challenges associated with communicating and transferring large amounts of data generated remotely to a data center in a timely and efficient manner. A central pillar of edge computing is local (i.e., at- or …
Flexible representation and manipulation of audio signals on quantum computers
By analyzing the numerical representation of amplitude values in audio signals and integrating the time component, a representation for audio signals …
Realization of a quantum autoencoder for lossless compression of quantum data
Download Citation | Realization of a quantum autoencoder for lossless compression of quantum data | As a ubiquitous aspect of modern information technology, data compression has a wide range of applications. Therefore, a quantum autoencoder which... | Find, read and cite all the research you need on ResearchGate
Study seeks to define quantum compression
A study led by Oak Ridge National Laboratory researchers identifies a new potential application in quantum computing that could be part of the next computationa
Quantum computing in music: simulating acoustics, designing instrument
Quantum computing could revolutionize music production and sound engineering. Its potential applications include simulating acoustic environments,designing.
Improving Audio Compression
Audio compression is an essential process in music production and distribution, as it allows for smaller file sizes and faster streaming. However, current compression algorithms can lead to a loss of sound quality. Quantum computing could potentially be used to develop more efficient compression algorithms that preserve sound quality while reducing file sizes.
The parallel processing power of quantum computing could be particularly useful in this application. By simultaneously processing large amounts of data, quantum computers could potentially identify and eliminate redundancies in the audio data that are not perceptible to the human ear.
Music production and sound engineering are areas that have greatly benefited from advancements in technology, and I believe quantum computing has the potential to revolutionize these fields.
Quantum data are compressed for the first time – Physics World
Physicists manage to squeeze three qubits into two
A quantum analogue of data compression has been demonstrated for the first time in the lab. Physicists working in Canada and Japan have squeezed quantum information contained in three quantum bits (qubits) into two qubits.
Compression of classical data is a simple procedure that allows a string of information to take up less space in a computer’s memory. Given an unadulterated string of, for example, 1000 binary values, a computer could simply record the frequency of the 1s and 0s, which might require just a dozen or so binary values. Recording the information about the order of those 1s and 0s would require a slightly longer string, but it would probably still be shorter than the original sequence.
Quantum data are rather different, and it is not possible to simply determine the frequencies of 1s and 0s in a string of quantum information. The problem comes down to the peculiar nature of qubits, which, unlike classical bits, can be a 1, a 0 or some “superposition” of both values.
A user can indeed perform a measurement to record the “one-ness” of a qubit, but such a measurement would destroy any information about that qubit’s “zero-ness”. What is more, if a user then measures a second qubit prepared in an identical way, he or she might find a different value for its “one-ness” – because qubits do not specify unique values but only the probability of measurement outcomes.
“This way you can store the qubits until you know what question you’re interested in,” says Aephraim Steinberg of the University of Toronto. “Then you can measure x if you want to know x; and if you want to know z, you can measure z – whereas if you don’t store the qubits, you have to choose which measurements you want to do right now.”
Quantum lidar prototype acquires real-time 3D images while fully submerged underwater
For the first time, researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.
Quantum computing could break the internet. This is how
We don’t know when. We don’t know who will get there first. But Q-day will happen — and it will change the world as we know it