Andrej Karpathy's keynote on June 17, 2025 at AI Startup School in San Francisco. Slides provided by Andrej: https://drive.google.com/file/d/1a0h1mkwfmV2Plek...
Today's L&D is more than just content. Or at least it should be.
When we think about AI in L&D, we often think about AI in learning design. Yet, to meet the needs of the business, L&D leaders need to orchestrate design, data, decisions and dialogue- incidentally, these are all things that AI can help with.
In ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐๐ฌ๐ข๐ ๐ง, we already extensively use AI not just for content production, but also for user research, as a sparring partner and a sounding board (that was one of the top write-in use cases in mine and Donald's AI in L&D survey last year).
In ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐ฌ๐ญ๐ซ๐๐ญ๐๐ ๐ฒ, AI can help make sense of business, people and skills data (featured use case: asking AI to find gaps in learning or performance support provision in your organisation), or work as a thought partner to help you bridge learning and business strategy. Crucially, it can also help you engage stakeholders by preparing you for conversations and tailoring your communications to different audiences.
In terms of ๐ฉ๐๐ซ๐ฌ๐จ๐ง๐๐ฅ๐ข๐ฌ๐๐ ๐ฌ๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ, AI interacts directly with employees to help them do their jobs: practise tricky conversations through role-plays and personalised feedback, prioritise and contextualise learning content to their needs, and, lately, retrieve exactly the information they need from almost anywhere in the companyโs knowledge base.
Finally, in ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐จ๐ฉ๐๐ซ๐๐ญ๐ข๐จ๐ง๐ฌ, AI can help do more than just draft emails and reports. Working together with humans, AI can help select the right vendors for the learning ecosystem, streamline employee help desk operations, analyse, make sense of and action on different kinds of data generated in L&D, and, of course, help L&D communicate with the rest of the business.
Researcher, producer, thought partner, communicator โ if your organisation only uses AI to write scripts, youโre leaving three quarters of the L&D value chain on the table.
I like a good table, and I hope this one will help you think about how to get more value out of your AI use.
---
P.S. I spent quite a lot of time arguing with myself about the dots on the table. Feel free to disagree and suggest AI roles or use cases that I have missed!
Nodes #GenAI #Learning #Talent #FutureOfWork #AIAdoption | 50 comments on LinkedIn
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!
Excited to share our latest commentary just published in Nature Reviews Psychology! โจ
""ย
ย
Generative AI tools such as ChatGPT are reshaping education, promising improvements in learner performance and reduced cognitive load. ๐ค
๐คBut here's the catch: Do these immediate gains translate into deep and lasting learning?
Reflecting on recent viral systematic reviews and meta-analyses on #ChatGPT and #Learning, we argue that educators and researchers need to clearly differentiate short-term performance benefits from genuine, durable learning outcomes. ๐ก
๐ Key takeaways:
โ Immediate boosts with generative AI tools don't necessarily equal durable learning
โ While generative AI can ease cognitive load, excessive reliance might negatively impact critical thinking, metacognition, and learner autonomy
โ Long-term, meaningful skill development demands going beyond immediate performance metrics
๐ Recommendations for future research and practice:
1๏ธโฃ Shift toward assessing retention, transfer, and deep cognitive processing
2๏ธโฃ Promote active learner engagement, critical evaluation, and metacognitive reflection
3๏ธโฃ Implement longitudinal studies exploring the relationship between generative AI assistance and prior learner knowledge
Special thanks ๐ to my amazing collaborators and mentors, Samuel Greiff, Jason M. Lodge, and Dragan Gasevic, for their invaluable contributions, guidance, and encouragement. A big shout-out to Dr. Teresa Schubert for her insightful comments and wonderful support throughout the editorial process! ๐
๐ Full article here: https://lnkd.in/g3YDQUrH
๐ Full-text Access (view-only version): https://rdcu.be/erwIt
#GenerativeAI #ChatGPT #AIinEducation #LearningScience #Metacognition #Cognition #EdTech #EducationalResearch #BJETspecialIssue #NatureReviewsPsychology #FutureOfEducation #OpenScience
In a now viral study, researchers examined how using ChatGPT for essay writing affects our brains and cognitive abilities.
In a now viral study, researchers examined how using ChatGPT for essay writing affects our brains and cognitive abilities. They divided participants into three groups: one using ChatGPT, one using search engines, and one using just their brains. Through EEG monitoring, interviews, and analysis of the essays, they discovered some not surprising results about how AI use impacts learning and cognitive engagement.
There were five key takeaways for me (although this is not an exhaustive list), within the context of this particular study:
1. The Cognitive Debt Issue
The study indicates that participants who used ChatGPT exhibited the weakest neural connectivity patterns when compared to those relying on search engines or unaided cognition. This suggests that defaulting to generative AI may function as an intellectual shortcut, diminishing rather than strengthening cognitive engagement.
Researchers are increasingly describing the tradeoff between short-term ease and productivity and long-term erosion of independent thinking and critical skills as โcognitive debt.โ This parallels the concept of technical debt, when developers prioritise quick solutions over robust design, leading to hidden costs, inefficiencies, and increased complexity downstream.
2. The Memory Problem
Strikingly, users of ChatGPT had difficulty recalling or quoting from essays they had composed only minutes earlier. This undermines the notion of augmentation; rather than supporting cognitive function, the tool appears to offload essential processes, impairing retention and deep processing of information.
3. The Ownership Gap
Participants who used ChatGPT reported a reduced sense of ownership over their work. If we normalise over-reliance on AI tools, we risk cultivating passive knowledge consumers rather than active knowledge creators.
4. The Homogenisation Effect
Analysis showed that essays from the LLM group were highly uniform, with repeated phrases and limited variation, suggesting reduced cognitive and expressive diversity. In contrast, the Brain-only group produced more varied and original responses. The Search group fell in between.
5. The Potential for Constructive Re-engagement ๐ง ๐ค ๐ค ๐ค
There is, however, promising evidence for meaningful integration of AI when used in conjunction with prior unaided effort:
โThose who had previously written without tools (Brain-only group), the so-called Brain-to-LLM group, exhibited significant increase in brain connectivity across all EEG frequency bands when allowed to use an LLM on a familiar topic. This suggests that AI-supported re-engagement invoked high levels of cognitive integration, memory reactivation, and top-down control.โ
This points to the potential for AI to enhance cognitive function when it is used as a complement to, rather than a substitute for, initial human effort.
At over 200 pages, expect multiple paper submissions out of this extensive body of work.
https://lnkd.in/gzicDHp2 | 16 comments on LinkedIn
๐๐จ, ๐ฒ๐จ๐ฎ๐ซ ๐๐ซ๐๐ข๐ง ๐๐จ๐๐ฌ ๐ง๐จ๐ญ ๐ฉ๐๐ซ๐๐จ๐ซ๐ฆ ๐๐๐ญ๐ญ๐๐ซ ๐๐๐ญ๐๐ซ ๐๐๐ ๐จ๐ซ ๐๐ฎ๐ซ๐ข๐ง๐ ๐๐๐ ๐ฎ๐ฌ๐.
See our paper for more results:ย "Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task" (link in the comments).
For 4 months, 54 students were divided into three groups: ChatGPT, Google -ai, and Brain-only. Across 3 sessions, each wrote essays on SAT prompts. In an optional 4th session, participants switched: LLM users used no tools (LLM-to-Brain), and Brain-only group used ChatGPT (Brain-to-LLM).
๐
๐. ๐๐๐ ๐๐ง๐ ๐๐ฌ๐ฌ๐๐ฒ ๐๐จ๐ง๐ญ๐๐ง๐ญ
- LLM Group: Essays were highly homogeneous within each topic, showing little variation. Participants often relied on the same expressions or ideas.
- Brain-only Group: Diverse and varied approaches across participants and topics.
- Search Engine Group: Essays were shaped by search engine-optimized content; their ontology overlapped with the LLM group but not with the Brain-only group.
๐๐. ๐๐ฌ๐ฌ๐๐ฒ ๐๐๐จ๐ซ๐ข๐ง๐ (๐๐๐๐๐ก๐๐ซ๐ฌ ๐ฏ๐ฌ. ๐๐ ๐๐ฎ๐๐ ๐)
- Teachersย detected patterns typical of AI-generated content and scoring LLM essays lower for originality and structure.
- AI Judgeย gave consistently higher scores to LLM essays, missing human-recognized stylistic traits.
๐๐๐: ๐๐๐ ๐๐ง๐๐ฅ๐ฒ๐ฌ๐ข๐ฌ
Connectivity: Brain-only group showed the highest neural connectivity, especially in alpha, theta, and delta bands. LLM users had the weakest connectivity, up to 55% lower in low-frequency networks. Search Engine group showed high visual cortex engagement, aligned with web-based information gathering.
๐บ๐๐๐๐๐๐ 4 ๐น๐๐๐๐๐๐:
- LLM-to-Brain (๐ค๐ค๐ค๐ง ) participantsย underperformed cognitively with reduced alpha/beta activity and poor content recall.
- Brain-to-LLM (๐ง ๐ง ๐ง ๐ค) participantsย showed strong re-engagement, better memory recall, and efficient tool use.
LLM-to-Brain participants had potential limitations in achieving robust neural synchronization essential for complex cognitive tasks.
Results forย Brain-to-LLM participantsย suggest that strategic timing of AI tool introduction following initial self-driven effort may enhance engagement and neural integration.
๐๐. ๐๐๐ก๐๐ฏ๐ข๐จ๐ซ๐๐ฅ ๐๐ง๐ ๐๐จ๐ ๐ง๐ข๐ญ๐ข๐ฏ๐ ๐๐ง๐ ๐๐ ๐๐ฆ๐๐ง๐ญ
- Quoting Ability: LLM users failed to quote accurately, while Brain-only participants showed robust recall and quoting skills.
- Ownership: Brain-only group claimed full ownership of their work; LLM users expressed either no ownership or partial ownership.
- Critical Thinking: Brain-only participants cared more aboutย ๐ธ๐ฉ๐ข๐ตย andย ๐ธ๐ฉ๐บย they wrote; LLM users focused onย ๐ฉ๐ฐ๐ธ.
- Cognitive Debt: Repeated LLM use led to shallow content repetition and reduced critical engagement. This suggests a buildup of "cognitive debt", deferring mental effort at the cost of long-term cognitive depth.
Support and share! โค๏ธ
#MIT #AI #Brain #Neuroscience #CognitiveDebt | 54 comments on LinkedIn
Du kannst jetzt das passende Modell fรผr deinen CustomGPT auswรคhlen.
Na endlich!
Du kannst jetzt das passende Modell fรผr deinen CustomGPT auswรคhlen.
CustomGPTs sind fรผr mich das beste Feature in ChatGPT und wurden in den letzten 12 Monaten stark vernachlรคssigt.
Mit der Modell-Auswahl kommt jetzt das erste gute Upgrade.
Mini-Guide zur Modell-Auswahl:
o3 -> Komplexe Problemstellungen und Datenanalyse
4.5 -> Kreative Aufgaben und Copywriting
4o -> Bild-Verarbeitung
4.1 -> Coding
Alle anderen Modelle benรถtigt man mMn nicht.
Mein Strategieberater bekommt zum Beispiel o3 hinterlegt (bessere Planungsfรคhigkeit in komplexen Aufgaben), wohingegen der Hook Writer GPT4.5 bekommt (besserer Schreibstil).
Wenn du die CustomGPTs selbst nutzen willst:
80+ Vorlagen frei verfรผgbar in unserer Assistenten-Datenbank ๐
P.S. Wie findest du das Update? | 15 Kommentare auf LinkedIn
BOOM! Microsoft just dropped a FREE 18-episode series on Generative AI.
Ideal for people who are new to AI & wanna start learning.
Here are 5 episodes that stood out
๐๐ ๐๐ถ๐น๐น ๐๐ฎ๐ธ๐ฒ ๐๐ผ๐ ๐น๐ฒ๐๐ ๐๐ต๐ฎ๐ป ๐ญ.๐ฑ ๐ต๐ผ๐๐ฟ๐ ๐๐ผ ๐๐ฎ๐๐ฐ๐ต ๐ฎ๐น๐น ๐๐ต๐ฒ๐๐ฒ:
๐ Introduction to Generative AI and LLMs
https://lnkd.in/dxds5CXY
๐ Exploring and Comparing Different LLMs
https://lnkd.in/dnu5sP68
๐ Understanding Prompt Engineering Fundamentals
https://lnkd.in/d8t56acG
๐ Building Low-Code AI Applications
https://lnkd.in/dKVXmdeK
๐ AI Agents โ Introduces AI Agents, where LLMs can take actions via tools or frameworks.
https://lnkd.in/d8VKw7Ve
More resources are in the comments.
Repost this post to help others in your network.
| 91 comments on LinkedIn
99% ๐ผ๐ณ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ ๐ด๐ฒ๐ ๐๐ต๐ถ๐ ๐๐ฟ๐ผ๐ป๐ด: ๐ง๐ต๐ฒ๐ ๐๐๐ฒ ๐๐ต๐ฒ ๐๐ฒ๐ฟ๐บ๐ ๐๐ ๐๐ด๐ฒ๐ป๐ ๐ฎ๐ป๐ฑ ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐ถ๐ป๐๐ฒ๐ฟ๐ฐ๐ต๐ฎ๐ป๐ด๐ฒ๐ฎ๐ฏ๐น๐ โ ๐ฏ๐๐ ๐๐ต๐ฒ๐ ๐ฑ๐ฒ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐๐๐ผ ๐ณ๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐น๐ ๐ฑ๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐! โฌ๏ธ
Letโs clarify it once and for all: โฌ๏ธ
1. ๐๐ ๐๐ด๐ฒ๐ป๐๐: ๐ง๐ผ๐ผ๐น๐ ๐๐ถ๐๐ต ๐๐๐๐ผ๐ป๐ผ๐บ๐, ๐ช๐ถ๐๐ต๐ถ๐ป ๐๐ถ๐บ๐ถ๐๐
โ AI agents are modular, goal-directed systems that operate within clearly defined boundaries. Theyโre built to:
* Use tools (APIs, browsers, databases)
* Execute specific, task-oriented workflows
* React to prompts or real-time inputs
* Plan short sequences and return actionable outputs
๐๐ฉ๐ฆ๐บโ๐ณ๐ฆ ๐ฆ๐น๐ค๐ฆ๐ญ๐ญ๐ฆ๐ฏ๐ต ๐ง๐ฐ๐ณ ๐ต๐ข๐ณ๐จ๐ฆ๐ต๐ฆ๐ฅ ๐ข๐ถ๐ต๐ฐ๐ฎ๐ข๐ต๐ช๐ฐ๐ฏ, ๐ญ๐ช๐ฌ๐ฆ: ๐๐ถ๐ด๐ต๐ฐ๐ฎ๐ฆ๐ณ ๐ด๐ถ๐ฑ๐ฑ๐ฐ๐ณ๐ต ๐ฃ๐ฐ๐ต๐ด, ๐๐ฏ๐ต๐ฆ๐ณ๐ฏ๐ข๐ญ ๐ฌ๐ฏ๐ฐ๐ธ๐ญ๐ฆ๐ฅ๐จ๐ฆ ๐ด๐ฆ๐ข๐ณ๐ค๐ฉ, ๐๐ฎ๐ข๐ช๐ญ ๐ต๐ณ๐ช๐ข๐จ๐ฆ, ๐๐ฆ๐ฆ๐ต๐ช๐ฏ๐จ ๐ด๐ค๐ฉ๐ฆ๐ฅ๐ถ๐ญ๐ช๐ฏ๐จ, ๐๐ฐ๐ฅ๐ฆ ๐ด๐ถ๐จ๐จ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด
But even the most advanced are limited by scope. They donโt initiate. They donโt collaborate. They execute what we ask!
2. ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐: ๐ ๐ฆ๐๐๐๐ฒ๐บ ๐ผ๐ณ ๐ฆ๐๐๐๐ฒ๐บ๐
โ Agentic AI is an architectural leap. Itโs not just one smarter agent โ itโs multiple specialized agents working together toward shared goals. These systems exhibit:
* Multi-agent collaboration
* Goal decomposition and role assignment
* Inter-agent communication via memory or messaging
* Persistent context across time and tasks
* Recursive planning and error recovery
* Distributed orchestration and adaptive feedback
Agentic AI systems donโt just follow instructions. They coordinate. They adapt. They manage complexity.
๐๐น๐ข๐ฎ๐ฑ๐ญ๐ฆ๐ด ๐ช๐ฏ๐ค๐ญ๐ถ๐ฅ๐ฆ: ๐ณ๐ฆ๐ด๐ฆ๐ข๐ณ๐ค๐ฉ ๐ต๐ฆ๐ข๐ฎ๐ด ๐ฑ๐ฐ๐ธ๐ฆ๐ณ๐ฆ๐ฅ ๐ฃ๐บ ๐ข๐จ๐ฆ๐ฏ๐ต๐ด, ๐ด๐ฎ๐ข๐ณ๐ต ๐ฉ๐ฐ๐ฎ๐ฆ ๐ฆ๐ค๐ฐ๐ด๐บ๐ด๐ต๐ฆ๐ฎ๐ด ๐ฐ๐ฑ๐ต๐ช๐ฎ๐ช๐ป๐ช๐ฏ๐จ ๐ฆ๐ฏ๐ฆ๐ณ๐จ๐บ/๐ด๐ฆ๐ค๐ถ๐ณ๐ช๐ต๐บ, ๐ด๐ธ๐ข๐ณ๐ฎ๐ด ๐ฐ๐ง ๐ณ๐ฐ๐ฃ๐ฐ๐ต๐ด ๐ช๐ฏ ๐ญ๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค๐ด ๐ฐ๐ณ ๐ข๐จ๐ณ๐ช๐ค๐ถ๐ญ๐ต๐ถ๐ณ๐ฆ ๐ฎ๐ข๐ฏ๐ข๐จ๐ช๐ฏ๐จ ๐ณ๐ฆ๐ข๐ญ-๐ต๐ช๐ฎ๐ฆ ๐ถ๐ฏ๐ค๐ฆ๐ณ๐ต๐ข๐ช๐ฏ๐ต๐บ
๐ง๐ต๐ฒ ๐๐ผ๐ฟ๐ฒ ๐๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ?
AI Agents = autonomous tools for single-task execution
Agentic AI = orchestrated ecosystems for workflow-level intelligence
๐ก๐ผ๐ ๐น๐ผ๐ผ๐ธ ๐ฎ๐ ๐๐ต๐ฒ ๐ฝ๐ถ๐ฐ๐๐๐ฟ๐ฒ: โฌ๏ธ
๐ข๐ป ๐๐ต๐ฒ ๐น๐ฒ๐ณ๐: a smart thermostat, which can be an AI Agent. It keeps your room at 21ยฐC. Maybe it learns your schedule. But itโs working alone.
๐ข๐ป ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐: Agentic AI. A full smart home ecosystem โ weather-aware, energy-optimized, schedule-sensitive. Agents talk to each other. They share data. They make coordinated decisions to optimize your comfort, cost, and security in real time.
Thatโs the shift = From pure task automation to goal-driven orchestration. From single-agent logic to collaborative intelligence. This is whatโs coming = This is Agentic AI. And if we confuse โagentโ with โagentic,โ we risk underbuilding for what AI is truly capable of.
The Cornell University paper in the comments on this topic is excellent! โฌ๏ธ | 186 comments on LinkedIn
In fact, after guiding many organisations on this journey over the past few years, I've noticed two consistent drivers of AI adoption:
โข A culture that encourages experimentation
โข A strategic mandate from leadership that unlocks time, resources, and the infrastructure needed to make AI work at scale
Without both, even the most powerful tools are used at a fraction of their potential, leaving the promise of AI unrealised and considerable investments wasted.
โก๏ธ If you have a conservative organisational culture, one that disincentivises taking risks and change, and there's no clear mandate to use AI, you'll have ๐ถ๐ฑ๐น๐ฒ ๐ฝ๐ผ๐๐ฒ๐ป๐๐ถ๐ฎ๐น. Try as you might, AI training will hardly translate into people using AI in their work. The knowledge might be there but the impact isn't.
โก๏ธ If you have an innovation culture, one where experimentation is encouraged, but where people are unsure if they're allowed to use AI, you'll have ๐ฐ๐ฎ๐๐๐ฎ๐น ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐ถ๐บ๐ฒ๐ป๐๐ - some people tinkering on their own, finding useful use cases and workarounds, but with no way to accumulate, build on, and spread this knowledge. That's where a lot of organisations find themselves in 2025 - the majority of employees are using AI in some form, yet their efforts are siloed and scattered.
โก๏ธ If you have both an innovation culture *and* and an active mandate, you're ๐ฝ๐ถ๐ผ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ถ๐ป๐ป๐ผ๐๐ฎ๐๐ถ๐ผ๐ป and there are few companies still at your level. That's an exciting place to be! That's also where a lot of organisations imagine they would get to as soon as they teach people to use AI, often without first doing the culture and mandate work.
โก๏ธ If your organisation encourages the use of AI but your conservative culture keeps hitting the brakes, you'll likely end up with ๐ฟ๐ฒ๐น๐๐ฐ๐๐ฎ๐ป๐ ๐ฐ๐ผ๐บ๐ฝ๐น๐ถ๐ฎ๐ป๐ฐ๐ฒ. That's also where a considerable number of organisations are right now: driven by expectations of benefits from AI adoption but burdened by processes that are incompatible with grassroots innovation.
There is a difference between individual and organisational AI adoption. Organisational adoption is frustratingly complex โ it requires coordination across departments and leaders, alignment with business priorities, and systems that enable change, not just enthusiasm.
Curiosity gets people started. Supportive systems turn momentum into scale.
Nodes #GenAI #AIAdoption #FutureOfWork #Talent
Saw this move from Google this morningโthanks to Marc Steven Ramos (a very fine creator and curator of thought-provoking content). This statement towards the end stood out for me: many of the platformโs โcourses were unused,โ and โnot relevant to the work we do today.โ
But Google is not representative of most companies. Not even of tech companies. They can (and should!) be AI-first in every respectโyesterday. Virtually all other companies will take a slower approach, maintaining their learning content and systems, for now.
So donโt think you need to drop everything immediately. Instead, work out what a more measured approach looks like for your organisation. Think about how youโre preparing your data, metadata, internal and external contentโand your peopleโfor this not-so-distant future when agents are doing more and more of the work, multiplying productivity. Help your company lead the wayโdonโt await instructions!
That said, I think most three-year horizons will include the other big pull quote from this piece:
Google will โfocus on teaching employees how to use modern artificial intelligence tools in their daily work routines.โ
That, I believe, is where the most worthyโand therefore sustainableโL&D efforts lie: not in creating courses and force-feeding them to people, but in enabling people to work better with AI.
โป๏ธ Please REPOST if people youโre connected to may like this.
โ Follow Marc Zao-Sanders for more of this kind of thing.
#AI #learning #filtered.com #acelo.ai
https://lnkd.in/ehA2pB_R
ps: I'm working fractionally for both acelo.ai (sales x AI) and filtered.com (learning content x AI). If you're interested in talking about either, DM me)
For the longest time we've had two main options to help people perform: upskilling or performance support. Just-in-case vs just-in-time. Push vs pull. With AI, we now have a third - enablement.
It's different from what we've had before:
๐๐ฉ๐ฌ๐ค๐ข๐ฅ๐ฅ๐ข๐ง๐ ("teach me") - commonly done through hands-on learning with feedback and reflection, such as scenario simulations, in-person role-plays, facilitated discussions, building and problem-solving. None of that has become less relevant, but AI has enabled scale through AI-enabled role-plays, coaching, and other avenues for personalised feedback.
๐๐๐ซ๐๐จ๐ซ๐ฆ๐๐ง๐๐ ๐ฌ๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ ("help me") - support in the flow of work, previously often in the format of short how-to resources located in convenient places. AI has elevated that in at least two ways: through knowledge management, which helps retrieve the necessary, contextualised information in the workflow; and general & specialised copilots that enhance the speed and, arguably, the expertise of the employee.
Yet, ๐๐ง๐๐๐ฅ๐๐ฆ๐๐ง๐ญ (โdo it for meโ) is different โ it takes the task off your plate entirely. Weโve seen hints of it with automations, but the text and analysis capabilities of genAI mean that increasingly 'skilled' tasks are now up for grabs.
Case in point: where written communication was once a skill to be learned, email and report writing are now increasingly being handed off to AI. No skill required (for better or worse) โ AI does it for you.
But here's a plot twist: a lot of that enablement happens outside of L&D tech. It may happen in sales or design software, or even your general-purpose enterprise AI.
All of which points to a bigger shift: roles, tasks, and ways of working are changing โ and L&D must tune into how work is being reimagined to adapt alongside it.
Nodes #GenAI #Learning #Talent #FutureOfWork #AIAdoption | 13 comments on LinkedIn
The Alan Turing Institute ๐ฎ๐ป๐ฑ the LEGO Group ๐ฑ๐ฟ๐ผ๐ฝ๐ฝ๐ฒ๐ฑ ๐๐ต๐ฒ ๐ณ๐ถ๐ฟ๐๐ ๐ฐ๐ต๐ถ๐น๐ฑ-๐ฐ๐ฒ๐ป๐๐ฟ๐ถ๐ฐ ๐๐ ๐๐๐๐ฑ๐! โฌ๏ธ
(๐ ๐ฎ๐ถ๐ด๐ต-๐ณ๐ฆ๐ข๐ฅ โ ๐ฆ๐ด๐ฑ๐ฆ๐ค๐ช๐ข๐ญ๐ญ๐บ ๐ช๐ง ๐บ๐ฐ๐ถ ๐ฉ๐ข๐ท๐ฆ ๐ค๐ฉ๐ช๐ญ๐ฅ๐ณ๐ฆ๐ฏ.)
While most AI debates and studies focus on models, chips, and jobs โ this one zooms in on something far more personal: ๐ช๐ต๐ฎ๐ ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป๐ ๐๐ต๐ฒ๐ป ๐ฐ๐ต๐ถ๐น๐ฑ๐ฟ๐ฒ๐ป ๐ด๐ฟ๐ผ๐ ๐๐ฝ ๐๐ถ๐๐ต ๐ด๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐๐ฒ ๐๐?
They surveyed 1,700+ kids, parents, and teachers across the UK โ and what they found is both powerful and concerning.
๐๐ฒ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฒ 9 ๐๐ต๐ถ๐ป๐ด๐ ๐๐ต๐ฎ๐ ๐๐๐ผ๐ผ๐ฑ ๐ผ๐๐ ๐๐ผ ๐บ๐ฒ ๐ณ๐ฟ๐ผ๐บ ๐๐ต๐ฒ ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐: โฌ๏ธ
1. 1 ๐ถ๐ป 4 ๐ธ๐ถ๐ฑ๐ (8โ12 ๐๐ฟ๐) ๐ฎ๐น๐ฟ๐ฒ๐ฎ๐ฑ๐ ๐๐๐ฒ ๐๐ฒ๐ป๐๐ โ ๐บ๐ผ๐๐ ๐๐ถ๐๐ต๐ผ๐๐ ๐๐ฎ๐ณ๐ฒ๐ด๐๐ฎ๐ฟ๐ฑ๐
โ ChatGPT, Gemini, and even MyAI on Snapchat are now part of daily digital play.
2. ๐๐ ๐ถ๐ ๐ต๐ฒ๐น๐ฝ๐ถ๐ป๐ด ๐ธ๐ถ๐ฑ๐ ๐ฒ๐ ๐ฝ๐ฟ๐ฒ๐๐ ๐๐ต๐ฒ๐บ๐๐ฒ๐น๐๐ฒ๐ โ ๐ฒ๐๐ฝ๐ฒ๐ฐ๐ถ๐ฎ๐น๐น๐ ๐๐ต๐ผ๐๐ฒ ๐๐ถ๐๐ต ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ป๐ฒ๐ฒ๐ฑ๐
โ 78% of neurodiverse kids use ChatGPT to communicate ideas they struggle to express otherwise.
3. ๐๐ฟ๐ฒ๐ฎ๐๐ถ๐๐ถ๐๐ ๐ถ๐ ๐๐ต๐ถ๐ณ๐๐ถ๐ป๐ด โ ๐ฏ๐๐ ๐ป๐ผ๐ ๐ฟ๐ฒ๐ฝ๐น๐ฎ๐ฐ๐ถ๐ป๐ด
โ Kids still prefer offline tools (arts, crafts, games), even when they enjoy AI-assisted play. Digital is not (yet) the default.
4. ๐๐ ๐ฎ๐ฐ๐ฐ๐ฒ๐๐ ๐ถ๐ ๐ต๐ถ๐ด๐ต๐น๐ ๐๐ป๐ฒ๐พ๐๐ฎ๐น
โ 52% of private school students use GenAI, compared to only 18% in public schools. The next digital divide is already here.
5. ๐๐ต๐ถ๐น๐ฑ๐ฟ๐ฒ๐ป ๐ฎ๐ฟ๐ฒ ๐๐ผ๐ฟ๐ฟ๐ถ๐ฒ๐ฑ ๐ฎ๐ฏ๐ผ๐๐ ๐๐โ๐ ๐ฒ๐ป๐๐ถ๐ฟ๐ผ๐ป๐บ๐ฒ๐ป๐๐ฎ๐น ๐ถ๐บ๐ฝ๐ฎ๐ฐ๐
โ Some kids refused to use GenAI after learning about water and energy costs. Let that sink in.
6. ๐ฃ๐ฎ๐ฟ๐ฒ๐ป๐๐ ๐ฎ๐ฟ๐ฒ ๐ผ๐ฝ๐๐ถ๐บ๐ถ๐๐๐ถ๐ฐ โ ๐ฏ๐๐ ๐ฑ๐ฒ๐ฒ๐ฝ๐น๐ ๐๐ผ๐ฟ๐ฟ๐ถ๐ฒ๐ฑ
โ 76% support AI use, but 82% are scared of inappropriate content and misinformation. Only 41% fear cheating.
7. ๐ง๐ฒ๐ฎ๐ฐ๐ต๐ฒ๐ฟ๐ ๐ฎ๐ฟ๐ฒ ๐๐๐ถ๐ป๐ด ๐๐ โ ๐ฎ๐ป๐ฑ ๐น๐ผ๐๐ถ๐ป๐ด ๐ถ๐
โ 85% say GenAI boosts their productivity, 88% feel confident using it. Theyโre ahead of the curve.
8. ๐๐ฟ๐ถ๐๐ถ๐ฐ๐ฎ๐น ๐๐ต๐ถ๐ป๐ธ๐ถ๐ป๐ด ๐ถ๐ ๐๐ป๐ฑ๐ฒ๐ฟ ๐๐ต๐ฟ๐ฒ๐ฎ๐
โ 76% of parents and 72% of teachers fear kids are becoming too trusting of GenAI outputs.
9. ๐๐ถ๐ฎ๐ ๐ฎ๐ป๐ฑ ๐ถ๐ฑ๐ฒ๐ป๐๐ถ๐๐ ๐ฟ๐ฒ๐ฝ๐ฟ๐ฒ๐๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป ๐ถ๐ ๐๐๐ถ๐น๐น ๐ฎ ๐ฏ๐น๐ถ๐ป๐ฑ๐๐ฝ๐ผ๐
โ Children of color felt less seen and less motivated to use tools that didnโt reflect them. Representation matters.
The next generation isnโt just using AI. Theyโre being shaped by it. Thatโs why we need a more focused, intentional approach: Teaching them not just how to use these tools โ but how to question them. To navigate the benefits, the risks, and the blindspots.
๐ช๐ฎ๐ป๐ ๐บ๐ผ๐ฟ๐ฒ ๐ฏ๐ฟ๐ฒ๐ฎ๐ธ๐ฑ๐ผ๐๐ป๐ ๐น๐ถ๐ธ๐ฒ ๐๐ต๐ถ๐?
Subscribe to Human in the Loop โ my new weekly deep dive on AI agents, real-world tools, and strategic insights: https://lnkd.in/dbf74Y9E | 174 comments on LinkedIn
Understanding LLMs, RAG, AI Agents, and Agentic AI
I frequently see conversations where terms like LLMs, RAG, AI Agents, and Agentic AI are used interchangeably, even though they represent fundamentally different layers of capability.
This visual guides explain how these four layers relateโnot as competing technologies, but as an evolving intelligence architecture.
Hereโs a deeper look:
1. ๐๐๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น)
This is the foundation. Models like GPT, Claude, and Gemini are trained on vast corpora of text to perform a wide array of tasks:
โ Text generation
โ Instruction following
โ Chain-of-thought reasoning
โ Few-shot/zero-shot learning
โ Embedding and token generation
However, LLMs are inherently limited to the knowledge encoded during training and struggle with grounding, real-time updates, or long-term memory.
2. ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป)
RAG bridges the gap between static model knowledge and dynamic external information.
By integrating techniques such as:
โ Vector search
โ Embedding-based similarity scoring
โ Document chunking
โ Hybrid retrieval (dense + sparse)
โ Source attribution
โ Context injection
โฆRAG enhances the quality and factuality of responses. It enables models to โrecallโ information they were never trained on, and grounds answers in external sourcesโcritical for enterprise-grade applications.
3. ๐๐ ๐๐ด๐ฒ๐ป๐
RAG is still a passive architectureโit retrieves and generates. AI Agents go a step further: they act.
Agents perform tasks, execute code, call APIs, manage state, and iterate via feedback loops. They introduce key capabilities such as:
โ Planning and task decomposition
โ Execution pipelines
โ Long- and short-term memory integration
โ File access and API interaction
โ Use of frameworks like ReAct, LangChain Agents, AutoGen, and CrewAI
This is where LLMs become active participants in workflows rather than just passive responders.
4. ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐
This is the most advanced layerโwhere we go beyond a single autonomous agent to multi-agent systems with role-specific behavior, memory sharing, and inter-agent communication.
Core concepts include:
โ Multi-agent collaboration and task delegation
โ Modular role assignment and hierarchy
โ Goal-directed planning and lifecycle management
โ Protocols like MCP (Anthropicโs Model Context Protocol) and A2A (Googleโs Agent-to-Agent)
โ Long-term memory synchronization and feedback-based evolution
Agentic AI is what enables truly autonomous, adaptive, and collaborative intelligence across distributed systems.
Whether youโre building enterprise copilots, AI-powered ETL systems, or autonomous task orchestration tools, knowing what each layer offersโand where it falls shortโwill determine whether your AI system scales or breaks.
If you found this helpful, share it with your team or network.
If thereโs something important you think I missed, feel free to comment or message meโIโd be happy to include it in the next iteration. | 119 comments on LinkedIn
BREAKING: Claude launches Education. Free learning is now much faster with AI:
1. Set clear learning goalsย
โณ Knowing what you want to learn makes it easier.
โณ Claude helps you define your path.
2. Provide context for your knowledgeย
โณ Understanding the bigger picture is key.ย
โณ Claude connects new ideas to what you already know.
3. Request detailed explanationsย
โณ Sometimes, you need more than a quick answer.ย
โณ Claude can dive deep into complex topics.
4. Get real-world examplesย
โณ Learning is better with practical applications.ย
โณ Claude shows how concepts work in the real world.
5. Practice writing and receive feedbackย
โณ Writing helps solidify your knowledge.ย
โณ Claude gives instant feedback to improve your skills.
6. Role-play for languages or codingย
โณ Learning by doing is effective.ย
โณ Claude can simulate conversations or coding scenarios.
7. Fact-check surprising claimsย
โณ Misinformation is everywhere.ย
โณ Claude helps you verify facts and claims.
8. Take breaks and reflect on learningย
โณ Reflection is vital for understanding.ย
โณ Claude reminds you to pause and think.
9. Keep a learning journalย
โณ Tracking your progress is important.ย
โณ Claude can help you log your journey.
10. Iterate and refine understandingย
โณ Learning is a process.ย
โณ Claude encourages you to improve your knowledge.ย | 246 comments on LinkedIn
New research shows that your learners arenโt using AI to cheat - theyโre using it to redesign your courses...
Despite our obsession with AI's impact on "academic integrity," two recent analyses show that rather than asking AI for answers, learners are much more likely to use AI to redesign the learning experience in an attempt to learn more.
Common strategies include asking AI to apply the protรฉgรฉ effect, using AI to apply the Pareto principle and enhancing levels of emotional metacognition within a learning experience, in the process redesigning the experience sometimes beyond recognition.
The uncomfortable truth? Learners are effectively running a real-time audit of our design decisions, processes & practicesโand as instructional designers, we don't come out too well.
In this week's blog post, I explore what learner + AI behaviour reveals about our profession and how we might turn this into an opportunity for innovation in instrucitonal design practices and principles.
Check out the full post using the link in comments.
Happy innovating!
Phil ๐ | 16 comments on LinkedIn
An Introduction to Training from the Back of the Room (TBR) where we use brain-based accelerated learning to create engaging fun learning experiences.Trainin...
Die Pflichtlektรผre zum Sonntag: Mary Meeker hat einen ihrer legendรคren Reports gedropped... Nach den jรคhrlichen "Internet Trends" nun ein 340 Seiten Brett ihrer Investment Firma Bond Capital ganz zum Thema AI.
Superbes Gedankenfutter hinsichtlich u.a.:
1. Nutzerwachstum und Verbreitung
โข ChatGPT erreichte 800 Millionen wรถchentliche Nutzer in nur 17 Monaten
โข Verbreitung auรerhalb Nordamerikas liegt bei 90 Prozent โ nach nur 3 Jahren
โข Vergleich: Das Internet brauchte dafรผr 23 Jahre
โข KI-Anwendungen skalieren global nahezu gleichzeitig
2. Investitionen und Infrastruktur
โข Big Tech (Apple, Microsoft, Google, Amazon, Meta, Nvidia) investiert รผber 212 Milliarden Dollar CapEx pro Jahr
โข KI wird zur neuen Infrastruktur โ vergleichbar mit Strom oder Internet
โข Rechenzentren werden zu produktiven "KI-Fabriken"
3. Entwickler-รkosysteme explodieren
โข Google Gemini: 7 Millionen aktive Entwickler, +500 Prozent in 12 Monaten
โข NVIDIA-รkosystem: 6 Millionen Entwickler, +6x in sieben Jahren
โข Open Source spielt zunehmend eine Schlรผsselrolle, auch in China
4. Technologischer Fortschritt beschleunigt sich exponentiell
โข 260 Prozent Wachstum pro Jahr bei Trainingsdatenmengen
โข 360 Prozent Wachstum pro Jahr beim Compute-Aufwand fรผr Modelltraining
โข Bessere Algorithmen fรผhren zu 200 Prozent Effizienzsteigerung pro Jahr
โข Fortschritte bei Supercomputern ermรถglichen +150 Prozent Leistungszuwachs jรคhrlich
5. Monetarisierung ist real โ aber teuer
โข OpenAI mit starkem Nutzerwachstum, aber weiterhin Milliardenverluste
โข Compute-Kosten steigen, Inferenzkosten pro Token sinken
โข Monetรคre Skalierung bleibt herausfordernd und kompetitiv
6. Arbeit und Gesellschaft verรคndern sich sichtbar
โข IT-KI-Stellen in den USA: +448 Prozent seit 2018
โข Nicht-KI-IT-Stellen: โ9 Prozent
โข Erste autonome Taxis nehmen Marktanteile in Stรคdten wie San Francisco
โข KI-Scribes in der Medizin reduzieren administrativen Aufwand massiv
7. Wissen und Kommunikation erleben ein neues Zeitalter
โข Nach Buchdruck und Internet folgt die รra der generativen Wissensverbreitung
โข Generative KI verรคndert, wie wir Wissen erzeugen, verbreiten und nutzen
โข Anwendungen wie ElevenLabs oder Spotify รผbersetzen Stimmen in Echtzeit, global skalierbar
8. Geopolitik wird zur KI-Strategie
โข USA und China investieren aggressiv in souverรคne KI-Modelle
โข Wer KI-Infrastruktur dominiert, definiert รถkonomische und politische Macht neu
โข Fรผhrende CTOs sprechen offen von einem neuen "Space Race"
9. Chancen und Risiken sind gewaltig
โข KI kann medizinische Forschung, Bildung und Kreativitรคt beflรผgeln
โข Gleichzeitig drohen Kontrollverlust, Missbrauch, Arbeitsplatzverdrรคngung, ethische Dilemmata
Meinungen? Evangelos Papathanassiou Christian Herold Thorsten Muehl Christoph Deutschmann Constance Stein Rebecca Schalber Sandy Brueckner Dirk Hofmann Henning Tomforde Dr. Paul Elvers Katharina Neubert Laura Seiffe Ekaterina Schneider
re:publica 25: Bob Blume - 404: Bildung not found - Wie Lernen wieder berรผhren kann
404: Bildung not found - Wie Lernen wieder berรผhren kannSchule soll aufs Leben vorbereiten. Einige fordern mehr Wissen รผber Steuern und Finanzen, KI liefert ...
B๐ฆ๐ต๐ณ๐ช๐ฆ๐ฃ๐ญ๐ช๐ค๐ฉ๐ฆ๐ด ๐๐ฆ๐ณ๐ฏ๐ฆ๐ฏ ๐จ๐ช๐ฏ๐จ ๐ฃ๐ช๐ด๐ฉ๐ฆ๐ณ ๐ท๐ฐ๐ฏ ๐ง๐ฐ๐ญ๐จ๐ฆ๐ฏ๐ฅ๐ฆ๐ฏ ๐๐ณ๐ข๐ฎ๐ช๐ด๐ด๐ฆ๐ฏ ๐ข๐ถ๐ด:
โข ๐๐ช๐ด๐ด๐ฆ๐ฏ๐ด- ๐ถ๐ฏ๐ฅ ๐๐ถ๐ข๐ญ๐ช๐ง๐ช๐ฌ๐ข๐ต๐ช๐ฐ๐ฏ๐ด๐ป๐ช๐ฆ๐ญ๐ฆ ๐ด๐ช๐ฏ๐ฅ ๐ง๐ถ๐ณ ๐ข๐ญ๐ญ๐ฆ ๐จ๐ญ๐ฆ๐ช๐ค๐ฉ ๐ช๐ฏ ๐ฆ๐ช๐ฏ๐ฆ๐ฎ ๐๐ถ๐ณ๐ณ๐ช๐ค๐ถ๐ญ๐ถ๐ฎ ๐ท๐ฐ๐ณ๐จ๐ฆ๐จ๐ฆ๐ฃ๐ฆ๐ฏ.
ย โข ๐๐ช๐ฆ๐ด๐ฆ ๐ก๐ช๐ฆ๐ญ๐ฆ ๐ธ๐ฆ๐ณ๐ฅ๐ฆ๐ฏ ๐ช๐ฏ ๐ง๐ณ๐ฆ๐ฎ๐ฅ๐ฐ๐ณ๐จ๐ข๐ฏ๐ช๐ด๐ช๐ฆ๐ณ๐ต๐ฆ๐ฏ ๐๐ฆ๐ฉ๐ณ๐ข๐ณ๐ณ๐ข๐ฏ๐จ๐ฆ๐ฎ๐ฆ๐ฏ๐ต๐ด โ๐ท๐ฆ๐ณ๐ฎ๐ช๐ต๐ต๐ฆ๐ญ๐ตโ.
ย โข ๐๐ช๐ฆ ๐๐ถ๐ง๐ฃ๐ข๐ถ ๐ฅ๐ฆ๐ณ ๐๐ข๐ฏ๐ฅ๐ญ๐ถ๐ฏ๐จ๐ด๐ง๐ข๐ฉ๐ช๐จ๐ฌ๐ฆ๐ช๐ต ๐ช๐ฏ ๐ฅ๐ฆ๐ณ ๐๐ณ๐ข๐น๐ช๐ด (๐๐ฐ๐ฎ๐ฑ๐ฆ๐ต๐ฆ๐ฏ๐ป๐ฆ๐ฏ) ๐ธ๐ช๐ณ๐ฅ ๐ฅ๐ถ๐ณ๐ค๐ฉ ๐๐ณ๐ข๐ฏ๐ด๐ง๐ฆ๐ณ๐ข๐ถ๐ง๐จ๐ข๐ฃ๐ฆ๐ฏ ๐จ๐ฆ๐ด๐ช๐ค๐ฉ๐ฆ๐ณ๐ต.
Wir erleben aktuell, verstรคrkt durch die Kรผnstliche Intelligenz, einen Paradigmenwechsel, der diese betriebliche Didaktik auf den Kopf stellt:
ย โข Formelle Bildungsangebote auf Basis von Curricula werden nach und nach durch โ๐๐น๐ถ๐ฝ๐ฝ๐ฒ๐ฑ ๐๐๐ฟ๐ฟ๐ถ๐ฐ๐๐น๐ฎโ (vgl. Sabine Seufert 2024) ersetzt. Danach bilden Werte und Kompetenzen โ Soft Skills โ die Ziele des Corporate Learning. Wissen und Qualifikation sind natรผrlich weiterhin notwendig, sind aber nicht mehr das Ziel des Lernens, sondern die notwendige Voraussetzung. Dies bedeutet, dass das erforderliche Wissen beispielsweise auch kuratiert durch die KI zur Verfรผgung gestelltย werden kann.
ย โข Der wichtigste Lernort wird der ๐๐ฟ๐ฏ๐ฒ๐ถ๐๐๐ฝ๐ฟ๐ผ๐๐ฒ๐๐, weil Werte und Kompetenzen nur selbstorganisiert bei der Bewรคltigung von realen Herausforderungen aufgebaut werden kรถnnen.
Daraus ergibt sich folgender Planungsrythmus.
1. Am Anfang steht die Frage, in welcher ๐ฃ๐ฟ๐ฎ๐ ๐ถ๐๐ต๐ฒ๐ฟ๐ฎ๐๐๐ณ๐ผ๐ฟ๐ฑ๐ฒ๐ฟ๐๐ป๐ด die angestrebten Soft-Skills aufgebaut werden kรถnnen. In Abstimmung mit ihren Fรผhrungskrรคften vereinbaren die Mitarbeitenden auf Basis ihrer Skills Diagnostik personalisierte Lernpfade im Arbeitsprozess.ย
ย 2. Im zweiten Schritt ist zu klรคren, welche ๐๐น๐ฎ๐ป๐ธ๐ถ๐ฒ๐ฟ๐๐ป๐ด die selbstorganisierten Lernprozesse der Mitarbeitenden benรถtigen. Dabei spielt das soziale Lernen eine zentrale Rolle. Begleitet werden diese Prozesse durch die Beratung und Begleitung durch Lernbegleitende und Expert*innen.
ย 3. Erst im dritten Schritt werden diese Lernmaรnahmen bei Bedarf durch ๐ง๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด๐ ergรคnzt. Beispielsweise bieten sich Methodentrainings, z. B. zu SCRUM, an, wenn die ausgewรคhlten Praxisaufgaben nach agilen Prinzipien erfolgen sollen.ย
ย 4. In unterstรผtzenden ๐ช๐ฒ๐ถ๐๐ฒ๐ฟ๐ฏ๐ถ๐น๐ฑ๐๐ป๐ด๐๐บ๐ฎร๐ป๐ฎ๐ต๐บ๐ฒ๐ป kรถnnen Basiswissen und Grundqualifikationen aufgebaut oder Anstรถรe fรผr die selbstorganisierten Lernprozess gegeben werden.
Lernen erfolgt von Anfang an in der Praxis, indem Arbeiten und Lernen zusammenwachsen. Damit erรผbrigen sich Konzepte zur Fรถrderung des Lerntransfers weitgehend.
Die Verantwortung fรผr das Lernen wandert damit zu den Mitarbeitenden, die dabei von der Personalentwicklung und Ihrer Fรผhrungskraft unterstรผtzt werden.
-- Task criticality and risk are central considerations in performance support design. When there's high consequence for error (safety risks, costly damage, or life-or-death stakes) the skill guide design needs to be highly intentional, context-aware, and tightly integrated into the environment of use.
-- A skill guide is great in high-risk situations (we were in an airline context). In a low-stakes context a pre-flight checklist is great for trained pilots. It supports memory recall for the essential steps in a high-risk task.
-- In a context such as de-icing a plane, a diagram-based skill guide is great to illustrate the basic controls of the machine. This helps build mental models.
-- In flight simulation training, skill guides can walk a novice through tasks like starting the engine, adjusting trim, or responding to a warning light. These guides scaffold learning and reduce cognitive load in a controlled environment.
-- Of course, skill guides can't always replace training. Real-time control of a plane requires deeply embodied skill: fine motor control, situational awareness, and rapid decision-making. You can't guide someone through that just in time with a single page or even a tablet-based tool.
-- In life-critical systems, thereโs a threshold beyond which skill guides must give way to rigorous training, simulation, and certification. Performance support becomes a supplement, not a substitute in these contexts.
Bob and Con have had immeasurable impact on my career and perspective when it comes to human performance. I even asked Bob to write the foreword of my most recent book. Their 5 Moments of Need framework enables direct alignment to real-time needs of workers. The moments of need are:
1. New (When learning something for the first time)
2. More (When there's a need to deepen or expand knowledge or skills)
3. Apply (When performing a task or applying knowledge in real situations)
4. Solve (When encountering a problem or unexpected challenge)
5. Change (When adapting to change such as a new process, tool, or an organizational shift)
When learning is designed against these moments of need, job performance not only becomes more effective, but the worker gets more done quicker and with minimal disruption and frustration. By addressing these moments effectively, you can optimize learning outcomes and drive tangible results.
In 2025, the AI landscape has evolved far beyond just large language models. Knowing which model to use for your specific use case โ and how โ is becoming a strategic advantage.
Letโs break down theย 8 most important model typesย and what theyโre actually built to do: โฌ๏ธ
1. ๐๐๐ โ ๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น
โ Your ChatGPT-style model.
Handles text, predicts the next token, and powers 90% of GenAI hype.
๐ Use case: content, code, convos.
2. ๐๐๐ โ ๐๐ฎ๐๐ฒ๐ป๐ ๐๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐ฐ๐ ๐ ๐ผ๐ฑ๐ฒ๐น
โ Lightweight, diffusion-style models.
Fast, quantized, and efficient โ perfect for real-time or edge deployment.
๐ Use case: image generation, optimized inference.
3. ๐๐๐ โ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐๐ฐ๐๐ถ๐ผ๐ป ๐ ๐ผ๐ฑ๐ฒ๐น
โ Where LLM meets planning.
Adds memory, task breakdown, and intent recognition.
๐ Use case: AI agents, tool use, step-by-step execution.
4. ๐ ๐ผ๐ โ ๐ ๐ถ๐ ๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐ ๐ฝ๐ฒ๐ฟ๐๐
โ One model, many minds.
Routes input to the right โexpertโ model slice โ dynamic, scalable, efficient.
๐ Use case: high-performance model serving at low compute cost.
5. ๐ฉ๐๐ โ ๐ฉ๐ถ๐๐ถ๐ผ๐ป ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น
โ Multimodal beast.
Combines image + text understanding via shared embeddings.
๐ Use case: Gemini, GPT-4o, search, robotics, assistive tech.
6. ๐ฆ๐๐ โ ๐ฆ๐บ๐ฎ๐น๐น ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น
โ Tiny but mighty.
Designed for edge use, fast inference, low latency, efficient memory.
๐ Use case: on-device AI, chatbots, privacy-first GenAI.
7. ๐ ๐๐ โ ๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น
โ The OG foundation model.
Predicts masked tokens using bidirectional context.
๐ Use case: search, classification, embeddings, pretraining.
8. ๐ฆ๐๐ โ ๐ฆ๐ฒ๐ด๐บ๐ฒ๐ป๐ ๐๐ป๐๐๐ต๐ถ๐ป๐ด ๐ ๐ผ๐ฑ๐ฒ๐น
โ Vision model for pixel-level understanding.
Highlights, segments, and understands *everything* in an image.
๐ Use case: medical imaging, AR, robotics, visual agents.
Understanding these distinctions is essentialย for selecting the right model architecture for specific applications, enabling more effective, scalable, and contextually appropriate AI interactions.
While these are some of the most prominent specialized AI models, there are many more emerging across language, vision, speech, and robotics โ each optimized for specific tasks and domains.
LLM, VLM, MoE, SLM, LCMย โ GenAI
LAM, MLM, SAMย โ Not classic GenAI, butย critical building blocksย for AI agents, reasoning, and multimodal systems
๐ ๐ฒ๐ ๐ฝ๐น๐ผ๐ฟ๐ฒ ๐๐ต๐ฒ๐๐ฒ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐๐ โ ๐ฎ๐ป๐ฑ ๐๐ต๐ฎ๐ ๐๐ต๐ฒ๐ ๐บ๐ฒ๐ฎ๐ป ๐ณ๐ผ๐ฟ ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐๐๐ฒ ๐ฐ๐ฎ๐๐ฒ๐ โ ๐ถ๐ป ๐บ๐ ๐๐ฒ๐ฒ๐ธ๐น๐ ๐ป๐ฒ๐๐๐น๐ฒ๐๐๐ฒ๐ฟ. ๐ฌ๐ผ๐ ๐ฐ๐ฎ๐ป ๐๐๐ฏ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐ต๐ฒ๐ฟ๐ฒ ๐ณ๐ผ๐ฟ ๐ณ๐ฟ๐ฒ๐ฒ: https://lnkd.in/dbf74Y9E
Kudos for the graphic goes to Generative AI ! | 45 comments on LinkedIn
Welche Interventionen kรถnnen menschliches Verhalten wirksam verรคndern?
Die Meta-Analyse vonย Albarracรญn et al. (2024) ist eine Meta-Analysen von Meta-Analysen. 147 Meta-Analysen wurden zusammengefasst. Krass.
Das Paper ist 106 Seiten lang und ein echtes Brett. Die Kolleg:innen haben รผber viele verschiedene Bereiche (z. B. Gesundheits- und Organisationsverhalten) hinweg untersucht, was das Verhalten von Menschen verรคndern kann.
Die Ergebnisse zeigen meiner Interpretation nach:
- es gibt keinen Interventionsbereich mit starken Effekten. Wir mรผssen demรผtig bleiben. Das Verhalten von Menschen zu beeinflussen, bleibt schwierig. Vielleicht ist das auch gut so.
- es existieren sowohl strukturelle als auch individuelle Interventionen, die erfolgreich sind. Mit einem Fokus auf nur "structure first" oder nur "people first" verschenkt man viel Potential.
- Menschen mit Wissen zu versorgen und hoffen, dass sie durch Einsicht ihr Verhalten verรคndern, bringt eher nichts.
- Sanktionen zeigen ebenfalls zu vernachlรคssigende Effekte
- nahezu keinen Verhaltenseffekt haben im Schnitt auch Mindsetinterventionen (beliefs)
- mittelstarke Effekte zeigt die Bereitstellung des Zugangs zu Ressourcen, die fรผr das Zielverhalten wichtig sind
- auch wirksam sind Interventionen, die auf Gewohnheiten abzielen. Also solche, die Verhaltensgewohnheiten etablieren oder sie verรคndern.
- zumindest kleine Effekte bieten soziale Unterstรผtzung, soziale Normen, Verhaltenstrainings und die Arbeit an und mit Emotionen.
Das sind natรผrlich "nur" Mittlerwerte von Mittelwerten aber das Studienfundament ist echt der Hammer.
Was kรถnnte das fรผr die Verhaltensverรคnderungen in Organisationen bedeuten?
Gebt den Menschen Zugang zu Ressourcen und unterstรผtzt sie bei Verรคnderungen. Versucht an den Gewohnheiten zu arbeiten und trainiert Verhalten statt Wissen.
Da vieles ein bisschen wirkt, braucht man wohl viele unterschiedliche Ansรคtze, um grรถรere Effekte zu erreichen. Die immer wieder gestellte Frage Mensch oder Organisation ist nicht zielfรผhrend. Strukturen und Menschen gehรถren gemeinsam gedacht und bearbeitet.
Die Studie ist frei verfรผgbar. Bei Interesse und Nachfragen gerne mal in die Studie reinschauen.
Albarracรญn, D., Fayaz-Farkhad, B., & Granados Samayoa, J. A. (2024). Determinants of behaviour and their efficacy as targets of behavioural change interventions. Nature Reviews Psychology, 3(6), 377-392.
#Verhalten #Macht #Transformation #Entwicklung | 175 Kommentare auf LinkedIn
Die 3 Level der KI-Integration - AI-Adoption, AI-Adaption & AI-Transformation
๐ฅ Adoption, Adaption, Transformation: Wie KI unsere Arbeitswelt verรคndert! ๐คโจ๐ง In diesem Video tauchen wir in die Welt der KI-Integration ein und beleucht...
๐ฅ๐ฒ๐ถ๐ฐ๐ต๐๐ฒ๐ถ๐๐ฒ๐ป-๐.๐ข. ๐ณรผ๐ฟ ๐๐ถ๐ฒ๐น๐ฒ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐. Erst wandern Suchanfragen von Google zu ChatGPT - jetzt beantwortet sie Google direkt in den AI-Overviews.
๐จ Studien zeigen bereits hohe Traffic-Rรผckgรคnge.
ย
Was kรถnnen Redakteure und Publisher tun?
ย
๐ Deshalb bin ich mit Matthรคus Michalik in den Podcast-Ring gestiegen:
ย
Wir haben 2 Folgen aufgenommen: ๐๐๐ข ๐๐๐ฎ๐๐ ๐ฆ๐๐ข & ๐ช๐ถ๐ฒ ๐ฝ๐น๐ฎ๐๐๐ถ๐ฒ๐ฟ๐ฒ๐ป ๐๐ถ๐ฟ ๐๐ป๐ ๐ถ๐ป ๐ฑ๐ฒ๐ป ๐๐-๐ข๐๐ฒ๐ฟ๐๐ถ๐ฒ๐?
ย
Als Teaser fรผr euch:
4๏ธโฃ Sofort-Tipps fรผr GEO (Generative Engine Optimization)
1. Autoritรคt & Vertrauen belegen
๐ธ Quellen, Zitate und fachliche Referenzen explizit nennen.
๐ธErgebnis: bis zu +40 % hรถhere Wahrscheinlichkeit, in KI-Antworten zitiert zu werden.
2. Zahlen sprechen lassen
๐ธStatistiken, Studien-Daten und eigene Benchmarks einbauen.
๐ธKI-Modelle gewichten quantitative Infos stรคrker โ +30 % Relevanz-Boost.
3. Klare Struktur, einfache Sprache
๐ธKurze Absรคtze, Bullet-Points, FAQs, sprechende Zwischenยญรผberschriften.
๐ธErleichtert Parsing durch LLMs und erhรถht die Chance auf direkte รbernahme.
4. Gezielter Fachwort-Einsatz
๐ธRelevante Terminologie und Branchen-Jargon bewusst einstreuen.
๐ธSignalisiert Expertise und verbessert das Matching fรผr spezifische Nutzerยญanfragen.
โผ๏ธ Kurzformel: Autoritรคt + Daten + Klarheit + Terminologie = Sichtbarkeit Chat-Antworten.
ย
๐ฆ๐ถ๐ฐ๐ต๐๐ฏ๐ฎ๐ฟ๐ธ๐ฒ๐ถ๐ ๐ถ๐ป ๐๐ ๐ข๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ โ ๐ฑ๐ฎ๐ ๐บ๐๐๐๐ ๐ฑ๐ ๐ฏ๐ฒ๐ฎ๐ฐ๐ต๐๐ฒ๐ป
๐ธGrundvoraussetzung: Deine Seite muss im Google-Index stehen und bereits ein gewisses Vertrauensniveau besitzen. Dann gilt:
๐ธHochwertige, faktenbasierte Inhalte: prรคzise, recherchiert, aktuell.
๐ธKlare Struktur: H-รberschriften, Listen, Tabellen โ erleichtert Parsing.
๐ธStrukturierte Daten (Schema.org): zeigt der KI, was welche Bedeutung hat.
๐ธUX & Performance: schnelle Ladezeiten, sauberes Mobile-Design.
๐ธE-E-A-T pflegen: Expertise, Erfahrung, Autoritรคt, Vertrauen kontinuierlich belegen (Autorenยญprofile, Quellen, Backlinks).
๐ด ๐ฃ๐ฟ๐ฎ๐ ๐ถ๐-๐ง๐ถ๐ฝ๐ฝ๐ ๐ณรผ๐ฟ ๐ฑ๐ถ๐ฒ ๐ฃ๐ผ๐๐-๐ฆ๐๐ข-ร๐ฟ๐ฎ
โ๏ธ Qualitรคt vor Quantitรคt โ fewer, deeper pieces mit klarer Expertise.
โ๏ธStruktur first โ H-Tags, Bullet-Points, FAQ-Blรถcke, Schema.
โ๏ธUser Experience optimieren โ Speed, Navigation, mobile UX.
โ๏ธMehrwert รผber die KI hinaus โ eigene Daten, Cases, Meinungen.
โ๏ธTraffic-Quellen streuen โ Social, E-Mail, Communities, Partnerschaften.
โ๏ธMonitoring & Anpassung โ beobachte, welche Seiten in AI Overviews landen, und iteriere.
โ๏ธMultimedial denken โ Videos, Podcasts, Infografiken ergรคnzen Text.
โ๏ธE-E-A-T kontinuierlich stรคrken โ Fachautor:innen, Referenzen, Reviews, Backlinks.
๐๐๐ฟ๐ยญ๐ณ๐ผ๐ฟ๐บ๐ฒ๐น: Qualitรคt + Struktur + Mehrwert + Vertrauen + Channel-Mix = langfristige Sichtbarkeit โ auch in der KI-Suche.
โ Wie geht ihr den Battle um Sichtbarkeit und Traffic an? Lasst uns diskutieren. ๐ | 12 Kommentare auf LinkedIn
Hugging Face ๐ท๐๐๐ ๐ฑ๐ฟ๐ผ๐ฝ๐ฝ๐ฒ๐ฑ 9 ๐๐ฅ๐๐ ๐๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐! Ifโฆ
Hugging Face ๐ท๐๐๐ ๐ฑ๐ฟ๐ผ๐ฝ๐ฝ๐ฒ๐ฑ 9 ๐๐ฅ๐๐ ๐๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐!
If youโre trying to level up or pivot into AI โ this is pure gold.
๐๐น๐น OPEN. ๐๐น๐น FREE. ๐๐น๐น expert thaugt.
Hereโs whatโs inside (with links): โฌ๏ธ
1. ๐๐๐ ๐๐ผ๐๐ฟ๐๐ฒ
Master large language models fast.
Train, fine-tune, deploy with Transformers.
โ https://lnkd.in/dcCMCs96
2. ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐๐ผ๐๐ฟ๐๐ฒ
Build multi-step reasoning agents with LangChain + HuggingFace.
โ https://lnkd.in/dJD3QRuT
3. ๐๐ฒ๐ฒ๐ฝ ๐ฅ๐ ๐๐ผ๐๐ฟ๐๐ฒ
Teach AI to learn like a human.
Reward-based decision-making in real environments.
โ https://lnkd.in/d8JuRvn8
4. ๐๐ผ๐บ๐ฝ๐๐๐ฒ๐ฟ ๐ฉ๐ถ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ
Image classification, segmentation, object detection โ with HF models.
https://lnkd.in/dEH8Tx-v
5. ๐๐๐ฑ๐ถ๐ผ ๐๐ผ๐๐ฟ๐๐ฒ
Turn sound into signal.
Voice recognition, music tagging, audio generation.
โ https://lnkd.in/dZtkA3sw
6. ๐ ๐ ๐ณ๐ผ๐ฟ ๐๐ฎ๐บ๐ฒ๐ ๐๐ผ๐๐ฟ๐๐ฒ
AI-powered game design: NPCs, logic, procedural generation.
โ https://lnkd.in/d4RhU6pz
7. ๐ ๐ ๐ณ๐ผ๐ฟ 3๐ ๐๐ผ๐๐ฟ๐๐ฒ
Work with point clouds, meshes, and 3D data in ML.
โ https://lnkd.in/dU8T8BPw
8. ๐๐ถ๐ณ๐ณ๐๐๐ถ๐ผ๐ป ๐ ๐ผ๐ฑ๐ฒ๐น๐ ๐๐ผ๐๐ฟ๐๐ฒ
The tech behind DALLยทE and Stable Diffusion.
Generate visuals from noise โ step by step.
โ https://lnkd.in/dFwN_idt
9. ๐ข๐ฝ๐ฒ๐ป-๐ฆ๐ผ๐๐ฟ๐ฐ๐ฒ ๐๐ ๐๐ผ๐ผ๐ธ๐ฏ๐ผ๐ผ๐ธ
Not a course โ a growing library of real-world AI notebooks.
Copy, remix, and build.
โ https://lnkd.in/dQ5BXvSz
Thereโs no excuse left. Save this. Study it. Build.
Share this with your network to help them level up! โป๏ธ
Which one will you start with? | 16 comments on LinkedIn
Wenn Du nochmal bei 0 starten kรถnntest, wie wรผrdest du eine Daten- und KI-Organisation aufbauen?
Genau das wollte ich von Claudia Pohlink wissen, die eine beeindruckende Karriere in der Daten- und KI-Welt bei Telekom, Deutsche Bahn und FIEGE hingelegt hat.
Also, wie sieht der Anti-Hype Blueprint aus?
๐ญ. ๐ฆ๐๐ฎ๐บ๐บ๐ฑ๐ฎ๐๐ฒ๐ป ๐ฑ๐ฒ๐ณ๐ถ๐ป๐ถ๐ฒ๐ฟ๐ฒ๐ป ๐๐ป๐ฑ ๐๐๐ฟ๐๐ธ๐๐๐ฟ๐ถ๐ฒ๐ฟ๐ฒ๐ป
Starte mit der Definition deiner Kerndomรคnen und Stammdaten. Bestimme fรผhrende Systeme fรผr jede Datendomรคne, bevor du Tools auswรคhlst. Dies schafft ein stabiles Fundament fรผr alle KI-Aktivitรคten.
๐ฎ. ๐๐ฟ๐๐๐ฒ ๐๐ฟ๐ณ๐ผ๐น๐ด๐๐ด๐ฒ๐๐ฐ๐ต๐ถ๐ฐ๐ต๐๐ฒ ๐๐ฐ๐ต๐ฟ๐ฒ๐ถ๐ฏ๐ฒ๐ป
Identifiziere einen ersten Use Case, zum Beispiel mit dem Controlling-Bereich, wo bereits Datenaffinitรคt besteht. Zeige schnelle Erfolge, um Management-Support zu gewinnen.
๐ฏ. ๐๐ฎ๐ ๐ฏ-๐๐ฎฬ๐๐๐ฒ๐ฟ-๐ ๐ผ๐ฑ๐ฒ๐น๐น ๐ถ๐บ๐ฝ๐น๐ฒ๐บ๐ฒ๐ป๐๐ถ๐ฒ๐ฟ๐ฒ๐ป
โข House of Data: Grundlagen, Governance, Architektur
โข House of AI: Use Cases, Data Scientists, Engineers
โข House of 3C: Change, Communication, Community
Diese 3 Bereiche sollten zu gleichen Teilen aufgebaut werden. Keiner kann ohne den anderen fรผr nachhaltige Daten- und KI-Implementierung. Die Leads sollten zu Beginn intern aufgebaut werden, extern kรถnnen operative Ressourcen zugekauft werden.
๐ฐ. ๐๐ฎ๐น๐ฎ๐ป๐ฐ๐ฒ ๐๐๐ถ๐๐ฐ๐ต๐ฒ๐ป ๐๐ฒ๐ป๐๐ฟ๐ฎ๐น ๐๐ป๐ฑ ๐ฑ๐ฒ๐๐ฒ๐ป๐๐ฟ๐ฎ๐น ๐ณ๐ถ๐ป๐ฑ๐ฒ๐ป
Etabliere zentrale Standards und Koordination, befรคhige aber gleichzeitig dezentrale Teams durch Multiplikatoren-Ideen wie KI-Awards, Schulungen und Hackathons. Laut Claudia ist diese Balance eine der grรถรten Herausforderungen in der Umsetzung.
๐ฑ. ๐ฃ๐ฟ๐ฎ๐ด๐บ๐ฎ๐๐ถ๐๐ฐ๐ต ๐ฝ๐น๐ฎ๐ป๐ฒ๐ป ๐๐๐ฎ๐๐ ๐๐ต๐ฒ๐ผ๐ฟ๐ฒ๐๐ถ๐๐ถ๐ฒ๐ฟ๐ฒ๐ป
Erstelle 6-12-Monats-Plรคne statt langfristiger Strategien. Dokumentiere Erfahrungen systematisch, auch Misserfolge, und passe deine Plรคne regelmรครig an.
Ich weiร, wie viele Mittelstรคndler vor der groรen Aufgabe stehen, Daten- und KI-Kompetenzen und Strukturen im Unternehmen aufzubauen.
Claudia's Erfahrungen sind eine echte Schatzkiste.
Ganz ohne Buzzwords, Hype oder Selbstprofilierung.
Claudia, 1000 Dank fรผr deine Offenheit und dass du uns an deinen Erfahrungen teilhaben lรคsst!
Was sagt ihr zum Blueprint? | 22 Kommentare auf LinkedIn
Mit seinem AI Mode und dem Agenten Mariner zieht Google eine Plattformschicht รผber das offene Web. Google transformiert sich von einer klassischen Suchmaschine zum zentralen Marktplatz, Assistenten und Zahlungsdienstleister. Nutzer kรถnnen kรผnftig Produkte direkt in der Google-Suche finden, vergleichen, kaufen und bezahlen โ ohne die Plattform zu verlassen.
Diese Entwicklung hat weitreichende Folgen fรผr das gesamte Internet-รkosystem. Die Auswirkungen treffen nicht nur klassische Online-Hรคndler, sondern auch Marktplatzgiganten wie Amazon, Verlage, รbersetzungsdienste wie DeepL, Reservierungsanbieter wie OpenTable, Buchungsseiten wie Ticketmaster oder Sprachschulen wie Duolingo.
Wer weiterhin sichtbar und relevant bleiben will, muss sich auf die neuen Spielregeln einstellen, in KI-Overviews und Shopping-Graphen prรคsent sein und seine Inhalte fรผr KI-Systeme optimieren. Denn OpenAI baut etwas รhnliches auf und auch Amazon bewegt sich in diese Richtung. Der Wettstreit der Plattformen ist damit endgรผltig im KI-Zeitalter angekommen.
Weiterlesen auf F.A.Z. PRO Digitalwirtschaft (โฌ) โถ๏ธ https://lnkd.in/e-r8k7upโฌ
Frankfurter Allgemeine Zeitung
LEGO hat externe Trainer und Berater rausgeschmissen und seine Fรผhrungskrรคfte zu Coaches auf drei Ebenen ausgebildet, die eine nachhaltige #Lernkultur schaffen.
Erfahrungswerte aus der aktuellen MIT Sloan Management Review (Bahnhofsbuchhandel).
โGehe langsam, wenn Du es eilig hast.โ
Diese Erkenntnis war es, die zwei weltbekannte dรคnische Unternehmen โ LEGO und VELUX (Dachfenster) โ dazu brachte, ihren Umgang mit Verรคnderung zu รผberdenken. Inmitten digitaler Umbrรผche und wachsender Komplexitรคt stieรen beide an die Grenzen ihres bisherigen Erfolgsmodells: Was frรผher als effizient galt, erwies sich plรถtzlich als zu starr und zu oberflรคchlich.
Workshops sind oft Strohfeuer. Externe Berater kamen und gingen. Also die Erkenntnis: Verรคnderung muss von innen kommen โ durch Fรผhrung.
LEGO und VELUX machten etwas Ungewรถhnliches: Sie bildeten ihre Fรผhrungskrรคfte nicht zu besseren Projektmanagern aus, sondern zu besseren Frage-Stellern. Sie machten sie zu Coaches. Zu Lernbegleitern ihrer eigenen Mitarbeitenden. Zu Menschen, die nicht mit Antworten glรคnzen, sondern mit klugen Fragen Orientierung geben.
โธป
Element 1: Probleme neu denken โ mit A3
Beide Unternehmen fรผhrten die A3-Methode von Toyota ein โ ein strukturiertes Denkformat, das ein Problem auf einer einzigen DIN-A3-Seite abbildet. Klar. Visuell. Jeder arbeitet damit.
Das dazugehรถrige Modell:
๐ Finding: Das richtige Problem entdecken.
๐ Facing: Sich ihm mutig stellen.
๐ Framing: Die eigentliche Herausforderung erkennen.
๐ Forming: Lรถsungen entwickeln.
Diese vier Phasen fรผhrten zu einem neuen Problembewusstsein: Nicht Symptome bekรคmpfen. Ursachen verstehen. Nicht sofort handeln. Erst gemeinsam denken. Teams lernten langsamer und nachhaltiger.
โธป
Element 2: Lernen im Kollektiv โ Gruppen-Coaching als Mikrokosmos
Individuelles Lernen reicht nicht. Also bauten LEGO und VELUX einen Raum fรผr kollektive Reflexion: Gruppencoaching.
Dort trafen sich Teams aus Fรผhrungskrรคften in festen Rollen: ein Moderator, eine Fallgeberin, ein Coach und stille Beobachter. In 30 Minuten wurde ein reales Problem durchdacht โ mit klugen Fragen, ehrlichen Perspektiven, geteilten Einsichten.
Diese Sessions stรคrkten nicht nur die Problemlรถsefรคhigkeiten โ sie schufen psychologische Sicherheit. Menschen konnten sich verletzlich zeigen. Fehler besprechen. Ideen testen. Und gemeinsam wachsen.
โธป
Element 3: Coaching-Hierarchie โ Lernen strukturell verankern
Um all das nachhaltig zu machen, entwickelten beide Unternehmen eine dreistufige Coaching-Struktur:
๐ First Coach: Die direkte Fรผhrungskraft begleitet das tรคgliche Lernen.
๐ Second Coach: Bereichsleiter coachen die Coaches โ und verbessern deren Fragekompetenz.
๐ Third Coach: Das Top-Management reflektiert die Metaebene und sichert strategische Ausrichtung.
So wurde Innovation nicht zur Aufgabe von Externen, sondern zur DNA der Organisation. Lernen wurde nicht delegiert โ sondern verkรถrpert. Erfordert erst Zeit und Geduld, zahlt sich langfristig jedoch aus. | 96 Kommentare auf LinkedIn
Beyond Analysis Paralysis: How Learning, Not Certainty, Drives Performance (Post 2 of 3)
โIn times of change, the learners inherit the earth, while the learned find themselves beautifully equipped for a world that no longer exists.โ โ Eric Hoffer In a world of swirling uncertainty, waiting for perfect information is the fastest path to irrelevance.