Allosteric activation of CwlD amidase activity by the GerS lipoprotein during Clostridioides difficile spore formation | bioRxiv
Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. Spore germination depends on the degradation of the protective spore peptidoglycan layer known as the spore cortex. Cortex degradation is mediated by enzymes that recognize the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL). In C. difficile, MAL synthesis depends on the activity of the CwlD amidase and the GerS lipoprotein, which directly binds CwlD. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase\_3 family members, we found that CwlD does not bind zinc stably on its own, unlike previously characterized amidase\_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to zinc, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of zinc co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought. ### Competing Interest Statement AS is a consultant and holds shares in a diagnostic start-up company, BioVector, Inc.