Beverages Free Full-Text Bioactivity of Fucoidan as an Antimicrobial Agent in a New Functional Beverage
Seaweeds are a sustainable source of novel functional ingredients with applicability in pharmaceutics, biotechnology, and food science. The bioactivity of most of these marine compounds has scarcely been studied. The present study overviews the bioactivity of the polysaccharide fucoidan derived from Fucus vesiculosus brown algae as an antimicrobial agent against Listeria monocytogenes and Salmonella enterica serovar Typhimurium. The results obtained in vitro in reference medium reveal a bacteriostatic and bactericidal effect of fucoidan against both pathogens, this bioactivity being significantly dependent (p-value ≤ 0.05) on the concentration, 5–1000 μg/mL, temperature, 8–37 °C, and exposure time, 0–12 days. The results were validated in the formulation of a new functional pasteurized apple beverage to be commercialized under refrigeration. Fucoidan added at 25–100 μg/mL was highly effective against both pathogens. These results increase knowledge for the future formulation of new functional beverages that include marine compounds (high content in fibre, high content in protein; prebiotic and antioxidant properties), additionally revealing antimicrobial potential.
Fucoidan inhibits CCL22 production through NF-B pathway in M2 macropha (...)
In tumor microenvironment, macrophages as a polarized M2 population promote tumor progression via releasing multiple cytokines and chemokines. A brown seaweed fucose-rich polysaccharide, fucoidan has antitumor activity and immune modulation through affecting tumor cells and lymphocytes. Here, we focused on the effect of fucoidan on macrophages especially M2 subtype. Our results demonstrated that fucoidan down-regulated partial cytokines and chemokines, especially a M2-type chemokine CCL22. Furthermore, fucoidan inhibited tumor cells migration and CD4+ T lymphocytes, especially Treg cells, recruitment induced by M2 macrophages conditioned medium through suppression of CCL22. Mechanismly, fucoidan inhibited CCL22 via suppressing p65-NF-κB phosphorylation and nuclear translocation. In addition, p38-MAPK and PI3K-AKT also affected the expression of CCL22 through differential modulation of NF-κB transcriptional activity. Taken together, we reveal an interesting result that fucoidan can inhibit tumor cell migration and lymphocytes recruitment by suppressing CCL22 in M2 macrophages via NF-κB-dependent transcription, which may be a novel and promising mechanism for tumor immunotherapy.
Low molecular weight fucoidan protects renal tubular cells from injury (...)
Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.
Low-molecular weight fucoidan inhibits the differentiation of osteocla (...)
Fucoidan is a type of sulfated polysaccharide isolated from seaweed. The present study used ovariectomized Sprague‑Dawley rats, which were treated with fucoidan. The effects of fucoidan on bone metabolism, density and microarchitecture were assessed using micro‑computed tomography (CT), histomorphometric analysis, biochemical markers of bone metabolism (Serum procollagen type I N propeptide and C‑terminal telopeptide‑1) and tests of mechanical competence of the femur. In addition, the effects of low‑molecular weight fucoidan (LMWF) on in vitro cultured osteoclasts were examined, in order to determine the mechanisms underlying LMWF‑induced osteoclastic inhibition. In ovariectomized rats, LMWF increased femoral bone density. Micro‑CT scan also revealed that LMWF prevented microarchitectural deterioration and histomorphometric analysis determined that LMWF increased trabecular bone number and reduced the surface of bone resorption. In addition, LMWF reduced the high bone turnover rate, and improved the mechanical properties of the femur in ovariectomized rats. In vitro experiments revealed that LMWF inhibited the receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony‑stimulating factor‑induced differentiation of RAW264.7 cells into tartrate‑resistant acid phosphatase (TRAP)‑positive osteoclasts, and reduced the bone resorption surface of the osteoclasts. Reverse transcription‑quantitative polymerase chain reaction demonstrated that LMWF inhibited mRNA expression of TRAP, matrix metallopeptidase‑9, nuclear activator of activated T‑cells 1, and osteoclast‑associated immunoglobulin‑like receptor, which are components of the signaling pathway for osteoclast differentiation. LMWF had no effect on RANK mRNA expression. In conclusion, the present study confirmed that LMWF inhibited osteoclast differentiation and bone resorption, and may be a potential treatment for osteoporosis in ovariectomized rats.
Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in (...)
Fucoidan, a sulfated polysaccharide, is an active component found in various species of seaweed. Although this compound has a strong anti-inflammatory activity, the underlying mechanisms exerted by fucoidan have not been fully elucidated. In the present study, the anti-inflammatory effects of fucoidan on lipopolysaccharide (LPS)-stimulated macrophages and zebrafish larvae were examined. The present data indicated that fucoidan significantly suppressed the secretion of pro-inflammatory mediators including nitric oxide (NO ) and prostaglandin E2 (PGE2), and cytokines, such as tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity, the protective effects of which were accompanied by a marked reduction in their regulatory gene expression at the transcription levels. Fucoidan also inhibited translocation of the nuclear factor-kappa B from the cytoplasm to the nucleus and attenuated LPS-induced production of intracellular reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, fucoidan reduced NO and PGE2 production and ROS accumulation in LPS-stimulated zebrafish larvae, which was associated with a diminished recruitment of neutrophils and macrophages. Based on the results of this study, we suggest that fucoidan has excellent potential as a therapeutic agent for inflammatory disorders.
Marine Drugs Free Full-Text Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida Therapy in Prostate Cancer Cell
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (
A comparison study on polysaccharide fractions from Laminaria japonica (...)
Our previous study has suggested that the crude polysaccharide obtained from Laminaria japonica by acid assisted extraction (LP-A) have significant bile acid-binding capacity, which probably ascribed to its specific structure characterization. The relationship between structure characterization and bile acid-binding capacity of the purified LP-A fractions are still unknown. This paper conducted a comparison study on the structure characterization and bile acid-binding capacity of three LP-A fractions (LP-A4, LP-A6, and LP-A8). The results indicated that LP-A4, LP-A6, and LP-A8, characterized as mannoglucan, fucomannoglucan, and fucogalactan, had significantly different structure characterization. Furthermore, the bile acid-binding capacity of LP-A8 was obviously higher than the other fractions, which may be attributed to its highly branched structure, abundant sulfate, fucose, and galactose in chemical composition and denser interconnected macromolecule network in molecular morphology. This study provides scientific evidence for the potential utilization of LP-A8 as an attractive functional food supplement candidate for the hyperlipidemia population.
Marine Drugs Free Full-Text Efficacy of Low-Molecular-Weight Fucoida (...)
Background: Low-molecular-weight fucoidan (LMF) is widely used as a food supplement for cancer patients. However, all of the studies are in vitro or were conducted using mice. Therefore, powerful clinical evidence for LMF use is relatively weak. This study aimed to evaluate the efficacy of LMF as a supplemental therapy to chemo-target agents in metastatic colorectal cancer (mCRC) patients. Methods: We conducted a prospective, randomized, double-blind, controlled trial to evaluate the efficacy of LMF as a supplemental therapy to chemotarget agents in patients with metastatic colorectal cancer (mCRC). Sixty eligible patients with mCRC were included. Finally, 54 patients were enrolled, of whom 28 were included in the study group and 26 in the control group. The primary endpoint was the disease control rate (DCR), and secondary endpoints included the overall response rate (ORR), progression-free survival (PFS), overall survival (OS), adverse effects (AEs), and quality of life (QOL). Results: The DCRs were 92.8% and 69.2% in the study and control groups, respectively (p = 0.026), in a median follow-up period of 11.5 months. The OS, PFS, ORR, AEs, and QOL did not significantly differ between the two groups. Conclusion: This is the first clinical trial evaluating the efficacy of LMF as a supplemental therapy in the management of patients with mCRC. The results indicate that LMF combined with chemotarget agents significantly improved the DCR.
Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29cADAM12 and miR-17-5pPTEN Axes in Human Breast Cancer Cells
In this study, we observed that brown seaweed fucoidan inhibited human breast cancer progression by upregulating microRNA (miR)-29c and downregulating miR-17-5p, thereby suppressing their target genes, a disintegrin and metalloproteinase 12 (ADAM12) and ...
Marine Drugs Free Full-Text Fucoidan and Lung Function Value in Viral Infection
Compromised lung function is a feature of both infection driven and non-infective pathologies. Viral infections—including the current pandemic strain SARS-CoV-2—that affect lung function can cause both acute and long-term chronic damage. SARS-CoV-2 infection suppresses innate immunity and promotes an inflammatory response. Targeting these aspects of SARS-CoV-2 is important as the pandemic affects greater proportions of the population. In clinical and animal studies, fucoidans have been shown to increase innate immunity and decrease inflammation. In addition, dietary fucoidan has been shown to attenuate pulmonary damage in a model of acute viral infection. Direct inhibition of SARS-CoV-2 in vitro has been described, but is not universal. This short review summarizes the current research on fucoidan with regard to viral lung infections and lung damage.
Marine Drugs Free Full-Text Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na+Glucose Cotransporter 1 Activity
We previously demonstrated that fucoidan with a type II structure inhibited postprandial hyperglycemia by suppressing glucose uptake, but the mechanism remains elusive. Here, we aimed to assess whether the effect of glucose absorption inhibition was related to the basic structure of fucoidans and preliminarily clarified the underlying mechanism. Fucoidans with type II structure and type I structure were prepared from Ascophyllumnodosum (AnF) or Laminariajaponica (LjF) and Kjellmaniellacrassifolia (KcF), respectively. The effects of various fucoidans on suppressing postprandial hyperglycemia were investigated using in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model), and in vivo (oral glucose tolerance test, OGTT) assays. The results showed that only AnF with a type II structure, but not LjF or KcF with type I structure, could inhibit the glucose transport in the Caco-2 monolayer and everted gut sac models. A similar result was seen in the OGTT of Kunming mice and leptin receptor-deficient (db/db) mice, where only AnF could effectively inhibit glucose transport into the bloodstream. Furthermore, AnF (400 mg/kg/d) treatment decreased the fasting blood glucose, HbA1c, and fasting insulin levels, while increasing the serum glucagon-like peptide-1 (GLP-1) level in obese leptin receptor-deficient (db/db) mice. Furthermore, surface plasmon resonance (SPR) analysis revealed the specific binding of AnF to Na+/glucose cotransporter 1 (SGLT1), which indicated the effect of AnF on postprandial hyperglycemia could be due to its suppression on SGLT1 activity. Taken together, this study suggests that AnF with a type II structure can be a promising candidate for hyperglycemia treatment.
Cancers Free Full-Text Oligo-Fucoidan Prevents M2 Macrophage Differentiation and HCT116 Tumor Progression
Reactive oxygen species (ROS) produced during intracellular metabolism or triggered by extrinsic factors can promote neoplastic transformation and malignant microenvironment that mediate tumor development. Oligo-Fucoidan is a sulfated polysaccharide isolated from the brown seaweed. Using human THP-1 monocytes and murine Raw264.7 macrophages as well as human HCT116 colorectal cancer cells, primary C6P2-L1 colorectal cancer cells and human MDA-MB231 breast cancer cells, we investigated the effect of Oligo-Fucoidan on inhibiting M2 macrophage differentiation and its therapeutic potential as a supplement in chemotherapy and tumor prevention. We now demonstrate that Oligo-Fucoidan is an antioxidant that suppresses intracellular ROS and mitochondrial superoxide levels in monocytes/macrophages and in aggressive cancer cells. Comparable to ROS inhibitors (DPI and NAC), Oligo-Fucoidan directly induced monocyte polarization toward M1-like macrophages and repolarized M2 macrophages into M1 phenotypes. DPI and Oligo-Fucoidan also cooperatively prevented M2 macrophage invasiveness. Indirectly, M1 polarity was advanced particularly when DPI suppressed ROS generation and supplemented with Oligo-Fucoidan in the cancer cells. Moreover, cisplatin chemoagent polarized monocytes and M0 macrophages toward M2-like phenotypes and Oligo-Fucoidan supplementation reduced these side effects. Furthermore, Oligo-Fucoidan promoted cytotoxicity of cisplatin and antagonized cisplatin effect on cancer cells to prevent M2 macrophage differentiation. More importantly, Oligo-Fucoidan inhibited tumor progression and M2 macrophage infiltration in tumor microenvironment, thus increasing of anti-tumor immunity.
Fucoidan inhibits lymphangiogenesis by downregulating the expression o (...)
Lymphangiogenesis is one of the promoters of tumor lymphatic metastasis. Fucoidan which is a fucose-enriched sulfated polysaccharide has effect on various pharmacological activities including anti-metastasis activity. However, the inhibitory effect of fucoidan on lymphangiogenesis remains unclear. H …
A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms
Fucoidan is a sulphated polysaccharide isolated from brown seaweeds. It has attracted a lot of attention due to its multiple physiological and biological properties. The most dominant polysaccharides...
Fucoidan Inhibits the Proliferation of Leiomyoma Cells and Decreases Extracellular Matrix-Associated Protein Expression
Background/Aims: Uterine leiomyomas (ULs) are benign uterine tumors, and the most notable pathophysiologic feature of ULs is excessive accumulation of extracellular matrix (ECM). Fucoidan is a polysaccharide extracted from brown seaweeds that has a wide range of pharmacological properties, including anti-fibrotic effects. We aimed to study the effe
Marine Drugs Free Full-Text Fucoidan Rescues p-Cresol-Induced Cellular Senescence in Mesenchymal Stem Cells via FAK-Akt-TWIST Axis
Mesenchymal stem cells (MSCs) are a source for cell-based therapy. Although MSCs have the potential for tissue regeneration, their therapeutic efficacy is restricted by the uremic toxin, p-cresol, in chronic kidney disease (CKD). To address this issue, we investigated the effect of fucoidan, a marine sulfated polysaccharide, on cellular senescence in MSCs. After p-cresol exposure, MSC senescence was induced, as indicated by an increase in cell size and a decrease in proliferation capacity. Treatment of senescent MSCs with fucoidan significantly reversed this cellular senescence via regulation of SMP30 and p21, and increased proliferation through the regulation of cell cycle-associated proteins (CDK2, CDK4, cyclin D1, and cyclin E). These effects were dependent on FAK-Akt-TWIST signal transduction. In particular, fucoidan promoted the expression of cellular prion protein (PrPC), which resulted in the maintenance of cell expansion capacity in p-cresol-induced senescent MSCs. This protective effect of fucoidan on senescence-mediated inhibition of proliferation was dependent on the TWIST-PrPC axis. In summary, this study shows that fucoidan protects against p-cresol-induced cellular senescence in MSCs through activation of the FAK-Akt-TWIST pathway and suggests that fucoidan could be used in conjunction with functional MSC-based therapies in the treatment of CKD.
Characterization and Immunomodulatory Effects of High Molecular Weight Fucoidan Fraction from the Sporophyll of Undaria pinnatifida
Immunomodulation involves two mechanisms, immunostimulation and immunosuppression. It is a complex mechanism that regulates the pathophysiology and pathogenesis of various diseases affecting the immune system. Immunomodulators can be used as immunostimulators to reduce the side effects of drugs that induce immunosuppression. In this study, we characterized the chemical composition of high molecular weight fucoidan (HMWF) and low molecular weight fucoidan and compared their functions as natural killer (NK) cell-derived immunostimulators in vitro. We also tested the effectiveness of HMWF, which has a relatively high function in vitro, as an immunostimulator in immunosuppressed animal models. In these models, HWMF significantly restored NK cell cytotoxicity and granzyme B release to the control group level. In addition, the expression of interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α also increased in the spleen. This study suggests that HMWF acts as an effective immunostimulant under immunosuppressive conditions.
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF) has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Alzheimer’s disease (AD) is a chronic neurodegenerative disease which contributes to memory loss and cognitive decline in the elderly. Fucoidan, extracted from brown algae, is a complex sulfated polysaccharide and potential bioactive compound. In this study, we investigated whether fucoidan protects PC12 cells from apoptosis induced by a combination of beta-amyloid 25–35 (Aβ25–35) and d-galactose (d-Gal), and improves learning and memory impairment in AD model mice. The results indicated that fucoidan could inhibit the release of cytochrome c from the mitochondria to cytosol and activation of caspases, and increase the expression of apoptosis inhibitor proteins (IAPs), including livin and X-linked IAP (XIAP) in PC12 cells damaged by Aβ25–35 and d-Gal-induction. Fucoidan reversed the decreased activity of acetylcholine (ACh) and choline acetyl transferase (ChAT), as well as the increased activity of acetylcholine esterase (AChE), in AD model mice induced by infusion of d-Gal. Furthermore, fucoidan improved antioxidant activity in vitro and in vivo by activation of superoxide dismutase (SOD) and glutathione (GSH). These results suggested that fucoidan could protect PC12 cells from apoptosis and ameliorate the learning and memory impairment in AD model mice, which appeared to be due to regulating the cholinergic system, reducing oxidative stress, and inhibiting the caspase-dependent apoptosis pathway.
Marine Drugs Free Full-Text Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice
This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.
Fucoidan inhibits tooth movement by promoting restorative macrophage polarization through the STAT3 pathway - Zhang - - Journal of Cellular Physiology - Wiley Online Library
Retention after treatment and effective anchorage control are two essential factors in orthodontics. Fucoidan treatment inhibits orthodontic tooth movement and enhances the stability of teeth after m...
Fucoidan Inhibits Vascular Remodeling in Transplant Vasculopathy in Rat Soin Functional Foods in Health and Disease
Background: Fucoidan is a natural sulfated polysaccharide which exists mainly in the cell wall matrix of various species of brown seaweed. Various forms of fucoidan have also been recognized in some marine invertebrates such as sea urchins and sea cucumbers. Fucoidan inhibits the spread of cancerous cells by preventing the adhesion of tumor cells to the extracellular matrix in addition to inducing apoptosis, or programmed self-destruction, in human T-cells infected by T-cells leukemia virus type I (HTLV-1) which causes adult T-cell leukemia. The polysaccharide has also been shown to stimulate the phagocytic action of macrophages and synthesis of several immune cell types, which increases protection against infection. Fucoidan gives the immune system a big boost by enhancing phagocytosis. Additionally, it increases the number of mature white blood cells which are circulating in the body, thereby bolstering the first line of defense against infections and diseases. Moreover, fucoidan has anti-coagulant, anti-thrombotic, anti-inflammatory, antioxidant, anti-allergic, anti-tumor properties and also many others. Methods and Results: In this study, we investigated whether fucoidan is able to alleviate the vascular remodeling process triggered by immunological stimuli in rat allogenic aorta transplantation model, in addition to the evaluated potential mechanisms responsible for the observed effects. Our rat aorta transplantation model was subjected to intraperitoneal or oral treatment with fucoidan or placebo. The results of our study demonstrated that fucoidan inhibits endointimal hyperplasia formation and vascular modulation. In particular, intraperitoneal and oral administration of fucoidan reduced neointima formation in allografts retrieved 8 weeks after transplantation. Moreover, both treatments with fucoidan reduced the number of smooth muscle (SM) a-actin positive cells in intima and adventitia, decreased percentage of macrophages in intima and media, and increased the number of leukocytes in media of the allografts. Fucoidan treatments have also caused reduction in apoptosis in allograft intima and media. Conclusion: Through our study, we demonstrated the inhibitory effect of fucoidan on vascular remodeling in transplant vasculopathy within rats. Our study is the first report of the beneficial effects of fucoidan oral administration on this process, which may have important clinical implications and result in a better understanding of vascular remodeling. Keywords : fucoidan, transplant vasculopathy, vascular remodeling