Glyconutrients

1569 bookmarks
Custom sorting
Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells - ScienceDirect
Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells - ScienceDirect
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD). Currently, approximately 20–40% of individuals with diabetes are…
·sciencedirect.com·
Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells - ScienceDirect
Low molecular weight fucoidan ameliorates the inflammation and glomeru (...)
Low molecular weight fucoidan ameliorates the inflammation and glomeru (...)
Diabetic nephropathy (DN) is a type of serious microangiopathy that is caused by diabetes mellitus (DM). It is the most common cause of chronic renal failure and end-stage renal disease, and it severely affects patients’ quality of life. This work aims to study the effect and mechanism of low molecular weight fucoidan (LMWF) on streptozotocin (STZ)-induced DN. The experimental results showed that LMWF prevented weight loss in DN rats, significantly reduced the levels of biochemical indexes in blood and urine samples, and also lowered hyaluronic acid (HA) levels and advanced glycosylation end product-specific receptor (AGER) levels in DN rats. LMWF maintained the structural integrity of glomerular basement membrane (GBM) and glomerulus, improved the glomerular filtration function, protected glycosaminoglycan from abnormal degrading, prevented advanced glycosylation end product (AGE) from being generated and accumulating, and also alleviated inflammatory response in DN rats. LMWF could obviously ameliorate and slow the development and progression of DN in rats.
·link.springer.com·
Low molecular weight fucoidan ameliorates the inflammation and glomeru (...)
Low molecular weight fucoidan protects renal tubular cells from injury (...)
Low molecular weight fucoidan protects renal tubular cells from injury (...)
Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.
·nature.com·
Low molecular weight fucoidan protects renal tubular cells from injury (...)
Low-molecular weight fucoidan inhibits the differentiation of osteocla (...)
Low-molecular weight fucoidan inhibits the differentiation of osteocla (...)
Fucoidan is a type of sulfated polysaccharide isolated from seaweed. The present study used ovariectomized Sprague‑Dawley rats, which were treated with fucoidan. The effects of fucoidan on bone metabolism, density and microarchitecture were assessed using micro‑computed tomography (CT), histomorphometric analysis, biochemical markers of bone metabolism (Serum procollagen type I N propeptide and C‑terminal telopeptide‑1) and tests of mechanical competence of the femur. In addition, the effects of low‑molecular weight fucoidan (LMWF) on in vitro cultured osteoclasts were examined, in order to determine the mechanisms underlying LMWF‑induced osteoclastic inhibition. In ovariectomized rats, LMWF increased femoral bone density. Micro‑CT scan also revealed that LMWF prevented microarchitectural deterioration and histomorphometric analysis determined that LMWF increased trabecular bone number and reduced the surface of bone resorption. In addition, LMWF reduced the high bone turnover rate, and improved the mechanical properties of the femur in ovariectomized rats. In vitro experiments revealed that LMWF inhibited the receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony‑stimulating factor‑induced differentiation of RAW264.7 cells into tartrate‑resistant acid phosphatase (TRAP)‑positive osteoclasts, and reduced the bone resorption surface of the osteoclasts. Reverse transcription‑quantitative polymerase chain reaction demonstrated that LMWF inhibited mRNA expression of TRAP, matrix metallopeptidase‑9, nuclear activator of activated T‑cells 1, and osteoclast‑associated immunoglobulin‑like receptor, which are components of the signaling pathway for osteoclast differentiation. LMWF had no effect on RANK mRNA expression. In conclusion, the present study confirmed that LMWF inhibited osteoclast differentiation and bone resorption, and may be a potential treatment for osteoporosis in ovariectomized rats.
·spandidos-publications.com·
Low-molecular weight fucoidan inhibits the differentiation of osteocla (...)
Low-molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats
Low-molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats
Fucoidan is a type of sulfated polysaccharide isolated from seaweed. The present study used ovariectomized Sprague‑Dawley rats, which were treated with fucoidan. The effects of fucoidan on bone metabolism, density and microarchitecture were assessed using micro‑computed tomography (CT), histomorphometric analysis, biochemical markers of bone metabolism (Serum procollagen type I N propeptide and C‑terminal telopeptide‑1) and tests of mechanical competence of the femur. In addition, the effects of low‑molecular weight fucoidan (LMWF) on in vitro cultured osteoclasts were examined, in order to determine the mechanisms underlying LMWF‑induced osteoclastic inhibition. In ovariectomized rats, LMWF increased femoral bone density. Micro‑CT scan also revealed that LMWF prevented microarchitectural deterioration and histomorphometric analysis determined that LMWF increased trabecular bone number and reduced the surface of bone resorption. In addition, LMWF reduced the high bone turnover rate, and improved the mechanical properties of the femur in ovariectomized rats. In vitro experiments revealed that LMWF inhibited the receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony‑stimulating factor‑induced differentiation of RAW264.7 cells into tartrate‑resistant acid phosphatase (TRAP)‑positive osteoclasts, and reduced the bone resorption surface of the osteoclasts. Reverse transcription‑quantitative polymerase chain reaction demonstrated that LMWF inhibited mRNA expression of TRAP, matrix metallopeptidase‑9, nuclear activator of activated T‑cells 1, and osteoclast‑associated immunoglobulin‑like receptor, which are components of the signaling pathway for osteoclast differentiation. LMWF had no effect on RANK mRNA expression. In conclusion, the present study confirmed that LMWF inhibited osteoclast differentiation and bone resorption, and may be a potential treatment for osteoporosis in ovariectomized rats.
·spandidos-publications.com·
Low-molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats
Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and (...)
Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and (...)
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Fucoidan, a sulfated polysaccharide extracted from brown algae, possesses potent anti-oxidative and anti-inflammatory effects. Considering TBI happens frequently in adults, especially in aged individuals, we herein sought to define the protective effects of low-molecular-weight fucoidan (LMWF) in the aged mice. 16- to 18-month-old mice administered with LMWF (1–50 mg/kg) or vehicle were subjected to TBI using a controlled cortical impact (CCI) model. LMWF at the doses of 10 and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume. This protection was associated with reduced neuronal apoptosis, as evidenced by TUNEL staining. Importantly, LMWF was effective even when administered up to 4 h after TBI. Treatment with LMWF improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. In addition, LMWF significantly suppressed protein carbonyl, lipid peroxidation, reactive oxygen species (ROS) generation, as well as mitochondrial dysfunction, which was evidenced by mitochondrial cytochrome c release and collapse of mitochondrial membrane potential (MMP). To evaluate the underlying molecular mechanisms, the expression of sirtuin 3 (Sirt3) was detected by RT-PCR and Western blot. The results showed that TBI significantly increased the expression of Sirt3, which was further elevated by LMWF treatment. Knockdown of Sirt3 using intracerebroventricular injection of small interfering RNA (siRNA) partially prevented the therapeutic effects of LMWF. Collectively, these findings demonstrated that LMWF exerts neuroprotection against TBI in the aged brain, which may be associated with the attenuation of mitochondrial dysfunction through Sirt3 activation.
·link.springer.com·
Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and (...)
Marine Drugs Free Full-Text Anticancer Effect of Fucoidan on DU-145 (...)
Marine Drugs Free Full-Text Anticancer Effect of Fucoidan on DU-145 (...)
In this study, we showed that PI3K/Akt signaling mediates fucoidan’s anticancer effects on prostate cancer cells, including suppression of proliferation. Fucoidan significantly decreased viability of DU-145 cancer cells in a concentration-dependent manner as shown by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The drug also significantly increased chromatin condensation, which indicates apoptosis, in a concentration-dependent manner as shown by DAPI (4′,6-diamidino-2-phenylindole) staining. Fucoidan increased expression of Bax, cleaved poly-ADP ribose polymerase and cleaved caspase-9, and decreased of the Bcl-2, p-Akt, p-PI3K, p-P38, and p-ERK in a concentration-dependent manner. In vivo, fucoidan (at 5 and 10 mg/kg) significantly decreased tumor volume, and increased apoptosis as assessed by the TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, confirming the tumor inhibitory effect. The drug also increased expression of p-Akt and p-ERK as shown by immunohistochemistry staining. Therefore, fucoidan may be a promising cancer preventive medicine due to its growth inhibitory effects and induction of apoptosis in human prostate cancer cells.
·mdpi.com·
Marine Drugs Free Full-Text Anticancer Effect of Fucoidan on DU-145 (...)
Marine Drugs Free Full-Text Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats HTML
Marine Drugs Free Full-Text Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats HTML
Nephrotic syndrome (NS) is a clinical syndrome with a variety of causes, mainly characterized by heavy proteinuria, hypoalbuminemia, and edema. At present, identification of effective and less toxic therapeutic interventions for nephrotic syndrome remains to be an important issue. In this study, we isolated fucoidan from Saccharina japonica and prepared its depolymerized fragment by oxidant degradation. Fucoidan and its depolymerized fragment had similar chemical constituents. Their average molecular weights were 136 and 9.5 kDa respectively. The effect of fucoidan and its depolymerized fragment on adriamycin-induced nephrotic syndrome were investigated in a rat model. The results showed that adriamycin-treated rats had heavy proteinuria and increased blood urea nitrogen (BUN), serum creatinine (SCr), total cholesterol (TC), and total triglyceride (TG) levels. Oral administration of fucoidan or low-molecular-weight fucoidan for 30 days could significantly inhibit proteinuria and decrease the elevated BUN, SCr, TG, and TC level in a dose-dependent manner. At the same dose (100 mg/kg), low-molecular-weight fucoidan had higher renoprotective activity than fucoidan. Their protective effect on nephrotic syndrome was partly related to their antioxidant activity. The results suggested that both fucoidan and its depolymerized fragment had excellent protective effect on adriamycin-induced nephrotic syndrome, and might have potential for the treatment of nephrotic syndrome.
·mdpi.com·
Marine Drugs Free Full-Text Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats HTML
Marine Drugs Free Full-Text Development of Injectable Fucoidan and Biological Macromolecules Hybrid Hydrogels for Intra-Articular Delivery of Platelet-Rich Plasma
Marine Drugs Free Full-Text Development of Injectable Fucoidan and Biological Macromolecules Hybrid Hydrogels for Intra-Articular Delivery of Platelet-Rich Plasma
Platelet-rich plasma (PRP) is rich in growth factors and has commonly been utilized in the repair and regeneration of damaged articular cartilage. However, the major drawbacks of direct PRP injection are unstable biological fixation and fast or burst release of growth factors. Fucoidan is a heparinoid compound that can bind growth factors to control their release rate. Furthermore, fucoidan can reduce arthritis through suppressing inflammatory responses and thus it has been reported to prevent the progression of osteoarthritis, promote bone regeneration and accelerate healing of cartilage injury. Injectable hydrogels can be used to deliver cells and growth factors for an alternative, less invasive treatment of cartilage defects. In this study, hyaluronic acid (HA) and fucoidan (FD) was blended with gelatin (GLT) and the GLT/HA/FD hybrid was further cross-linked with genipin (GP) to prepare injectable GP-GLT/HA/FD hydrogels. The gelation rate was affected by the GP, GLT, HA and FD concentrations, as well as the pH values. The addition of HA and FD to GLT networks improved the mechanical strength of the hydrogels and facilitated the sustained release of PRP growth factors. The GP-GLT/HA/FD hydrogel showed adequate injectability, shape-persistent property and strong adhesive ability, and was more resistant to enzymatic degradation. The PRP-loaded GP-GLT/HA/FD hydrogel promoted cartilage regeneration in rabbits, which may lead to an advanced PRP therapy for enhancing cartilage repair.
·mdpi.com·
Marine Drugs Free Full-Text Development of Injectable Fucoidan and Biological Macromolecules Hybrid Hydrogels for Intra-Articular Delivery of Platelet-Rich Plasma
Marine Drugs Free Full-Text Efficacy of Low-Molecular-Weight Fucoida (...)
Marine Drugs Free Full-Text Efficacy of Low-Molecular-Weight Fucoida (...)
Background: Low-molecular-weight fucoidan (LMF) is widely used as a food supplement for cancer patients. However, all of the studies are in vitro or were conducted using mice. Therefore, powerful clinical evidence for LMF use is relatively weak. This study aimed to evaluate the efficacy of LMF as a supplemental therapy to chemo-target agents in metastatic colorectal cancer (mCRC) patients. Methods: We conducted a prospective, randomized, double-blind, controlled trial to evaluate the efficacy of LMF as a supplemental therapy to chemotarget agents in patients with metastatic colorectal cancer (mCRC). Sixty eligible patients with mCRC were included. Finally, 54 patients were enrolled, of whom 28 were included in the study group and 26 in the control group. The primary endpoint was the disease control rate (DCR), and secondary endpoints included the overall response rate (ORR), progression-free survival (PFS), overall survival (OS), adverse effects (AEs), and quality of life (QOL). Results: The DCRs were 92.8% and 69.2% in the study and control groups, respectively (p = 0.026), in a median follow-up period of 11.5 months. The OS, PFS, ORR, AEs, and QOL did not significantly differ between the two groups. Conclusion: This is the first clinical trial evaluating the efficacy of LMF as a supplemental therapy in the management of patients with mCRC. The results indicate that LMF combined with chemotarget agents significantly improved the DCR.
·mdpi.com·
Marine Drugs Free Full-Text Efficacy of Low-Molecular-Weight Fucoida (...)
Marine Drugs Free Full-Text Fucoidan and Fucosylated Chondroitin Sul (...)
Marine Drugs Free Full-Text Fucoidan and Fucosylated Chondroitin Sul (...)
Application of cytostatics in cancer patients’ chemotherapy results in a number of side effects, including the inhibition of various parts of hematopoiesis. Two sulfated polysaccharides, fucoidan from the seaweed Chordaria flagelliformis (PS-Fuc) and fucosylated chondroitin sulfate from the sea cucumber Massinium magnum (PS-FCS), were studied as stimulators of hematopoiesis after cyclophosphamide immunosuppression in mice. Recombinant granulocyte colony-stimulating factor (r G-CSF) was applied as a reference. Both tested polysaccharides PS-Fuc and PS-FCS have a similar activity to r G-CSF, causing pronounced neutropoiesis stimulation in animals with myelosuppression induced by cyclophosphamide (CPh). Moreover, these compounds are also capable to enhance thrombopoiesis and erythropoiesis. It should be noted that PS-FCS demonstrated a greater activity than r G-CSF. The results indicate the perspective of further studies of PS-Fuc and PS-FCS, since these compounds can be considered as potentially promising stimulators of hematopoiesis. Such drugs are in demand for the accompanying treatment of cancer patients who suffer from hematological toxicity during chemo and/or radiation therapy.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan and Fucosylated Chondroitin Sul (...)
Marine Drugs Free Full-Text Fucoidan and Lung Function Value in Viral Infection
Marine Drugs Free Full-Text Fucoidan and Lung Function Value in Viral Infection
Compromised lung function is a feature of both infection driven and non-infective pathologies. Viral infections—including the current pandemic strain SARS-CoV-2—that affect lung function can cause both acute and long-term chronic damage. SARS-CoV-2 infection suppresses innate immunity and promotes an inflammatory response. Targeting these aspects of SARS-CoV-2 is important as the pandemic affects greater proportions of the population. In clinical and animal studies, fucoidans have been shown to increase innate immunity and decrease inflammation. In addition, dietary fucoidan has been shown to attenuate pulmonary damage in a model of acute viral infection. Direct inhibition of SARS-CoV-2 in vitro has been described, but is not universal. This short review summarizes the current research on fucoidan with regard to viral lung infections and lung damage.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan and Lung Function Value in Viral Infection
Marine Drugs Free Full-Text Fucoidan Extracted from Undaria pinnatifida Source for Nutraceuticals Functional Foods
Marine Drugs Free Full-Text Fucoidan Extracted from Undaria pinnatifida Source for Nutraceuticals Functional Foods
The importance of fucoidan as a functional ingredient in food, health products, and pharmaceutics is well-recognized due to its beneficial biological effects. Fucoidan is usually extracted from brown seaweeds, including Undaria pinnatifida. Fucoidan exhibits beneficial bio-activity and has antioxidant, anticancer, and anticoagulant properties. This review focuses on the biological activity of U. pinnatifida-derived fucoidan and investigates its structure–activity or fraction–activity relationship. It also describes several fucoidan extracts, along with their claimed anticancer effects. It aims to provide information and thoughts for future research such as the development of fucoidan into functional foods or nutraceuticals.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan Extracted from Undaria pinnatifida Source for Nutraceuticals Functional Foods
Marine Drugs Free Full-Text Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na+Glucose Cotransporter 1 Activity
Marine Drugs Free Full-Text Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na+Glucose Cotransporter 1 Activity
We previously demonstrated that fucoidan with a type II structure inhibited postprandial hyperglycemia by suppressing glucose uptake, but the mechanism remains elusive. Here, we aimed to assess whether the effect of glucose absorption inhibition was related to the basic structure of fucoidans and preliminarily clarified the underlying mechanism. Fucoidans with type II structure and type I structure were prepared from Ascophyllumnodosum (AnF) or Laminariajaponica (LjF) and Kjellmaniellacrassifolia (KcF), respectively. The effects of various fucoidans on suppressing postprandial hyperglycemia were investigated using in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model), and in vivo (oral glucose tolerance test, OGTT) assays. The results showed that only AnF with a type II structure, but not LjF or KcF with type I structure, could inhibit the glucose transport in the Caco-2 monolayer and everted gut sac models. A similar result was seen in the OGTT of Kunming mice and leptin receptor-deficient (db/db) mice, where only AnF could effectively inhibit glucose transport into the bloodstream. Furthermore, AnF (400 mg/kg/d) treatment decreased the fasting blood glucose, HbA1c, and fasting insulin levels, while increasing the serum glucagon-like peptide-1 (GLP-1) level in obese leptin receptor-deficient (db/db) mice. Furthermore, surface plasmon resonance (SPR) analysis revealed the specific binding of AnF to Na+/glucose cotransporter 1 (SGLT1), which indicated the effect of AnF on postprandial hyperglycemia could be due to its suppression on SGLT1 activity. Taken together, this study suggests that AnF with a type II structure can be a promising candidate for hyperglycemia treatment.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na+Glucose Cotransporter 1 Activity
Marine Drugs Free Full-Text Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3KAkt, JNK and NF-B Pathways in Uric Acid-Exposed HK-2 Cells
Marine Drugs Free Full-Text Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3KAkt, JNK and NF-B Pathways in Uric Acid-Exposed HK-2 Cells
This work aimed to investigate the effect of fucoidan (FPS) on urate transporters induced by uric acid (UA). The results showed that UA stimulated the expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in HK-2 cells, and FPS could reverse the effect. Moreover, UA could activate NF-κB, JNK and PI3K/Akt pathways, but both pathway inhibitors and FPS inhibited the UA-induced activation of these three pathways. These data suggested that FPS effectively inhibited the expression induction of reabsorption transporters URAT1 and GLUT9 by UA, through repressing the activation of NF-κB, JNK and PI3K/Akt signal pathways in HK-2 cells. The in vitro research findings support the in vivo results that FPS reduces serum uric acid content in hyperuricemia mice and rats through inhibiting the expression of URAT1 and GLUT9 in renal tubular epithelial cells. This study provides a theoretical basis for the application of FPS in the treatment of hyperuricemia.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3KAkt, JNK and NF-B Pathways in Uric Acid-Exposed HK-2 Cells
Marine Drugs Free Full-Text Fucoidan from Undaria pinnatifida Ameliorates Epidermal Barrier Disruption via Keratinocyte Differentiation and CaSR Level Regulation HTML
Marine Drugs Free Full-Text Fucoidan from Undaria pinnatifida Ameliorates Epidermal Barrier Disruption via Keratinocyte Differentiation and CaSR Level Regulation HTML
The epidermal barrier acts as a line of defense against external agents as well as helps to maintain body homeostasis. The calcium concentration gradient across the epidermal barrier is closely related to the proliferation and differentiation of keratinocytes (KCs), and the regulation of these two processes is the key to the repair of epidermal barrier disruption. In the present study, we found that fucoidan from Undaria pinnatifida (UPF) could promote the repair of epidermal barrier disruption in mice. The mechanistic study demonstrated that UPF could promote HaCaT cell differentiation under low calcium condition by up-regulating the expression of calcium-sensing receptor (CaSR), which could then lead to the activation of the Catenin/PLCγ1 pathway. Further, UPF could increase the expression of CaSR through activate the ERK and p38 pathway. These findings reveal the molecular mechanism of UPF in the repair of the epidermal barrier and provide a basis for the development of UPF into an agent for the repair of epidermal barrier repair.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan from Undaria pinnatifida Ameliorates Epidermal Barrier Disruption via Keratinocyte Differentiation and CaSR Level Regulation HTML
Marine Drugs Free Full-Text Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues
Marine Drugs Free Full-Text Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues
Purpose: Radiotherapy is a crucial treatment approach for many types of cancer. Radiation pneumonitis (RP) is one of the major complications in chest irradiation. Fucoidan is a sulfated polysaccharide found mainly in various species of brown seaweed. Recent studies have demonstrated the anti-inflammatory effects of fucoidan. However, no study has reported a well-established prophylactic agent for RP. Therefore, we investigated the effects of fucoidan on RP and radiotherapy (RT)-induced lung fibrosis. Materials and Methods: We compared RP and RT-induced fibrosis in lung tissue specimens obtained from irradiated (10 Gy/shot) C57BL/6 mice with or without fucoidan administration (200 mg/kg/day, oral gavage for 14 days). The expression patterns of cytokines in the pleural fluid were determined using a cytokine array and confirmed through enzyme immunoassays. Results: Fucoidan administration attenuated RP and RT-induced fibrosis in lung tissues. Decreased neutrophil and macrophage accumulation was observed in irradiated lung tissues, and radiation-induced lung fibrosis, as demonstrated by Masson trichrome staining, was attenuated. We investigated the expression patterns of inflammatory cytokines in the irradiated lung pleural fluid through the protein array; results revealed that fucoidan administration changed the expression patterns of inflammatory cytokines in irradiated lung tissues. Furthermore, the expression levels of TIMP-1, CXCL1, MCP-1, MIP-2, and interleukin-1Ra were substantially enhanced in the pleural fluid, but fucoidan administration significantly reduced their expression. Conclusions: Fucoidan changes the expression patterns of inflammatory cytokines, which may consequently attenuate RP and RT-induced lung fibrosis.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues
Marine Drugs Free Full-Text Fucoidan Rescues p-Cresol-Induced Cellular Senescence in Mesenchymal Stem Cells via FAK-Akt-TWIST Axis
Marine Drugs Free Full-Text Fucoidan Rescues p-Cresol-Induced Cellular Senescence in Mesenchymal Stem Cells via FAK-Akt-TWIST Axis
Mesenchymal stem cells (MSCs) are a source for cell-based therapy. Although MSCs have the potential for tissue regeneration, their therapeutic efficacy is restricted by the uremic toxin, p-cresol, in chronic kidney disease (CKD). To address this issue, we investigated the effect of fucoidan, a marine sulfated polysaccharide, on cellular senescence in MSCs. After p-cresol exposure, MSC senescence was induced, as indicated by an increase in cell size and a decrease in proliferation capacity. Treatment of senescent MSCs with fucoidan significantly reversed this cellular senescence via regulation of SMP30 and p21, and increased proliferation through the regulation of cell cycle-associated proteins (CDK2, CDK4, cyclin D1, and cyclin E). These effects were dependent on FAK-Akt-TWIST signal transduction. In particular, fucoidan promoted the expression of cellular prion protein (PrPC), which resulted in the maintenance of cell expansion capacity in p-cresol-induced senescent MSCs. This protective effect of fucoidan on senescence-mediated inhibition of proliferation was dependent on the TWIST-PrPC axis. In summary, this study shows that fucoidan protects against p-cresol-induced cellular senescence in MSCs through activation of the FAK-Akt-TWIST pathway and suggests that fucoidan could be used in conjunction with functional MSC-based therapies in the treatment of CKD.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan Rescues p-Cresol-Induced Cellular Senescence in Mesenchymal Stem Cells via FAK-Akt-TWIST Axis
Marine Drugs Free Full-Text Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms
Marine Drugs Free Full-Text Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure–activity relationship of fucoidan from the most promising seaweed species.
·mdpi.com·
Marine Drugs Free Full-Text Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms
Marine Drugs Free Full-Text Induction of p53-Independent Apoptosis a (...)
Marine Drugs Free Full-Text Induction of p53-Independent Apoptosis a (...)
It is well known that fucoidan, a natural sulfated polysaccharide present in various brown algae, mediates anticancer effects through the induction of cell cycle arrest and apoptosis. Nevertheless, the role of tumor suppressor p53 in the mechanism action of fucoidan remains unclear. Here, we investigated the anticancer effect of fucoidan on two p53 isogenic HCT116 (p53+/+ and p53−/−) cell lines. Our results showed that inhibition of cell viability, induction of apoptosis and DNA damage by treatment with fucoidan were similar in two cell lines. Flow cytometric analysis revealed that fucoidan resulted in G1 arrest in the cell cycle progression, which correlated with the inhibition of phosphorylation of retinoblastoma protein (pRB) and concomitant association of pRB with the transcription factor E2Fs. Furthermore, treatment with fucoidan obviously upregulated the expression of cyclin-dependent kinase (CDK) inhibitors, such as p21WAF1/CIP1 and p27KIP1, which was paralleled by an enhanced binding with CDK2 and CDK4. These events also commonly occurred in both cell lines, suggesting that fucoidan triggered G1 arrest and apoptosis in HCT116 cells by a p53-independent mechanism. Thus, given that most tumors exhibit functional p53 inactivation, fucoidan could be a possible therapeutic option for cancer treatment regardless of the p53 status.
·mdpi.com·
Marine Drugs Free Full-Text Induction of p53-Independent Apoptosis a (...)
Marine Drugs Free Full-Text Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida Therapy in Prostate Cancer Cell
Marine Drugs Free Full-Text Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida Therapy in Prostate Cancer Cell
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (
·mdpi.com·
Marine Drugs Free Full-Text Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida Therapy in Prostate Cancer Cell
Marine Drugs Free Full-Text Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study
Marine Drugs Free Full-Text Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study
Fucoidans are a class of fucose-rich sulfated polysaccharides derived from brown macroalgae that exert a range of biological activities in vitro and in vivo. To generate an unbiased assessment of pathways and processes affected by fucoidan, a placebo-controlled double-blind pilot study was performed in healthy volunteers. Blood samples were taken immediately before and 24 h after ingestion of a single dose of 1 g of Undaria pinnatifida fucoidan (UPF) or placebo. Levels of isolated miRNAs were analyzed using Taqman Open Array Human MicroRNA panels. Out of 754 miRNAs screened, UPF affected a total of 53 miRNAs. Pathway analysis using the TALOS data analysis tool predicted 29 different pathways and processes that were largely grouped into cell surface receptor signaling, cancer-related pathways, the majority of which were previously associated with fucoidans. However, this analysis also identified nine pathways and processes that have not been associated with fucoidans before. Overall, this study illustrates that even a single dose of fucoidans has the potential to affect the expression of genes related to fundamental cellular processes. Moreover, it confirms previous data that fucoidans influence immunity, cancer cells, inflammation, and neurological function.
·mdpi.com·
Marine Drugs Free Full-Text Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study
Marine Drugs Free Full-Text Oral Fucoidan Attenuates Lung Pathology and Clinical Signs in a Severe Influenza A Mouse Model
Marine Drugs Free Full-Text Oral Fucoidan Attenuates Lung Pathology and Clinical Signs in a Severe Influenza A Mouse Model
Fucoidans are known to be effective inhibitors of inflammation, and of virus binding and cellular entry. Undaria pinnatifida-derived fucoidan (UPF) was assessed in a severe influenza A (H1N1, PR8) infection model in mice. Initially, UPF was gavaged at 3.52 mg daily in a treatment model. Gross lung pathology (consolidation) was significantly reduced as compared to controls. UPF was then presented as a feed supplement at a rate of either nil, 3.52 mg/day or 7.04 mg/day in a prophylactic model, dosed three days before infection. A significant improvement was observed in the clinical signs of ill-health, as well as a reduction in gross lung pathology in animals treated with the higher dose, although there was no significant reduction in lung viral titres.
·mdpi.com·
Marine Drugs Free Full-Text Oral Fucoidan Attenuates Lung Pathology and Clinical Signs in a Severe Influenza A Mouse Model