The basics of roxygen2 tags and how to use them for documenting functions.
Examples
@examples provides executable R code showing how to use the function in practice. This is a very important part of the documentation because many people look at the examples before reading anything. Example code must work without errors as it is run automatically as part of R CMD check.
For the purpose of illustration, it’s often useful to include code that causes an error. You can do this by wrapping the code in try() or using \dontrun{} to exclude from the executed example code.
For finer control, you can use @examplesIf:
#' @examplesIf interactive()
#' browseURL("https://roxygen2.r-lib.org")
Instead of including examples directly in the documentation, you can put them in separate files and use @example path/relative/to/package/root to insert them into the documentation.
All functions must have examples for initial CRAN submission.
Chat with large language models from a range of providers including Claude, OpenAI, Azure, Bedrock, and Google Gemini. Supports streaming,a asyncronous calls, tool calling, and structured data extraction.
The tidyprompt package allows users to prompt and empower their large language models (LLMs) in a tidy way. It provides a framework to construct LLM prompts using tidyverse-inspired piping syntax, with a library of pre-built prompt wrappers and the option to build custom ones. Additionally, it supports structured LLM output extraction and validation, with automatic feedback and retries if necessary. Moreover, it enables specific LLM reasoning modes, autonomous R function calling for LLMs, and compatibility with any LLM provider.
I used shinyapps.io for my own shiny app. It’s a great service. You can deploy your app for free, test it and show it to other people. But there’s also a downside: The memory an app can use is limited. So I was looking for another way to deploy my app. So I took a look at Docker.
Help yourself to these free books, tutorials, packages, cheat sheets, and many more materials for R programming. There’s a separate overview for handy R programming tricks. If you have additi…
rstudio/swagger: Swagger is a collection of HTML, Javascript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API.
Swagger is a collection of HTML, Javascript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API. - rstudio/swagger