Found 14 bookmarks
Newest
Design Patterns in R
Design Patterns in R
Build robust and maintainable software with object-oriented design patterns in R. Design patterns abstract and present in neat, well-defined components and interfaces the experience of many software designers and architects over many years of solving similar problems. These are solutions that have withstood the test of time with respect to re-usability, flexibility, and maintainability. R6P provides abstract base classes with examples for a few known design patterns. The patterns were selected by their applicability to analytic projects in R. Using these patterns in R projects have proven effective in dealing with the complexity that data-driven applications possess.
·tidylab.github.io·
Design Patterns in R
Fast JSON, NDJSON and GeoJSON Parser and Generator
Fast JSON, NDJSON and GeoJSON Parser and Generator
A fast JSON parser, generator and validator which converts JSON, NDJSON (Newline Delimited JSON) and GeoJSON (Geographic JSON) data to/from R objects. The standard R data types are supported (e.g. logical, numeric, integer) with configurable handling of NULL and NA values. Data frames, atomic vectors and lists are all supported as data containers translated to/from JSON. GeoJSON data is read in as simple features objects. This implementation wraps the yyjson C library which is available from .
·coolbutuseless.github.io·
Fast JSON, NDJSON and GeoJSON Parser and Generator
REST API in R with plumber
REST API in R with plumber
API and R Nowadays, it’s pretty much expected that software comes with an HTTP API interface. Every programming language out there offers a way to expose APIs or make GET/POST/PUT requests, including R. In this post, I’ll show you how to create an API using the plumber package. Plus, I’ll give you tips on how to make it more production ready - I’ll tackle scalability, statelessness, caching, and load balancing. You’ll even see how to consume your API with other tools like python, curl, and the R own httr package.
Nowadays, it’s pretty much expected that software comes with an HTTP API interface. Every programming language out there offers a way to expose APIs or make GET/POST/PUT requests, including R. In this post, I’ll show you how to create an API using the plumber package. Plus, I’ll give you tips on how to make it more production ready - I’ll tackle scalability, statelessness, caching, and load balancing. You’ll even see how to consume your API with other tools like python, curl, and the R own httr package
# When an API is started it might take some time to initialize # this function stops the main execution and wait until # plumber API is ready to take queries. wait_for_api <- function(log_path, timeout = 60, check_every = 1) { times <- timeout / check_every for(i in seq_len(times)) { Sys.sleep(check_every) if(any(grepl(readLines(log_path), pattern = "Running plumber API"))) { return(invisible()) } } stop("Waiting timed!") }
Oh, in some examples I am using redis. So, before you dive in, make sure to fire up a simple redis server. At the end of the script, I’ll be turning redis off, so you don’t want to be using it for anything else at the same time. I just want to remind you that this code isn’t meant to be run on a production server.
redis is launched in a background, , so you might want to wait a little bit to make sure it’s fully up and running before moving on.
wait_for_redis <- function(timeout = 60, check_every = 1) { times <- timeout / check_every for(i in seq_len(times)) { Sys.sleep(check_every) status <- suppressWarnings(system2("redis-cli", "PING", stdout = TRUE, stderr = TRUE) == "PONG") if(status) { return(invisible()) } } stop("Redis waiting timed!") }
First off, let’s talk about logging. I try to log as much as possible, especially in critical areas like database accesses, and interactions with other systems. This way, if there’s an issue in the future (and trust me, there will be), I should be able to diagnose the problem just by looking at the logs alone. Logging is like “print debugging” (putting print(“I am here”), print(“I am here 2”) everywhere), but done ahead of time. I always try to think about what information might be needed to make a correct diagnosis, so logging variable values is a must. The logger and glue packages are your best friends in that area.
Next, it might also be useful to add a unique request identifier ((I am doing that in setuuid filter)) to be able to track it across the whole pipeline (since a single request might be passed across many functions). You might also want to add some other identifiers, such as MACHINE_ID - your API might be deployed on many machines, so it could be helpful for diagnosing if the problem is associated with a specific instance or if it’s a global issue.
In general you shouldn’t worry too much about the size of the logs. Even if you generate ~10KB per request, it will take 100000 requests to generate 1GB. And for the plumber API, 100000 requests generated in a short time is A LOT. In such scenario you should look into other languages. And if you have that many requests, you probably have a budget for storing those logs:)
It might also be a good idea to setup some automatic system to monitor those logs (e.g. Amazon CloudWatch if you are on AWS). In my example I would definitely monitor Error when reading key from cache string. That would give me an indication of any ongoing problems with API cache.
Speaking of cache, you might use it to save a lot of resources. Caching is a very broad topic with many pitfalls (what to cache, stale cache, etc) so I won’t spend too much time on it, but you might want to read at least a little bit about it. In my example, I am using redis key-value store, which allows me to save the result for a given request, and if there is another requests that asks for the same data, I can read it from redis much faster.
Note that you could use memoise package to achieve similar thing using R only. However, redis might be useful when you are using multiple workers. Then, one cached request becomes available for all other R processes. But if you need to deploy just one process, memoise is fine, and it does not introduce another dependency - which is always a plus.
info <- function(req, ...) { do.call( log_info, c( list("MachineId: {MACHINE_ID}, ReqId: {req$request_id}"), list(...), .sep = ", " ), envir = parent.frame(1) ) }
#* Log some information about the incoming request #* https://www.rplumber.io/articles/routing-and-input.html - this is a must read! #* @filter setuuid function(req) { req$request_id <- UUIDgenerate(n = 1) plumber::forward() }
#* Log some information about the incoming request #* @filter logger function(req) { if(!grepl(req$PATH_INFO, pattern = "PATH_INFO")) { info( req, "REQUEST_METHOD: {req$REQUEST_METHOD}", "PATH_INFO: {req$PATH_INFO}", "HTTP_USER_AGENT: {req$HTTP_USER_AGENT}", "REMOTE_ADDR: {req$REMOTE_ADDR}" ) } plumber::forward() }
To run the API in background, one additional file is needed. Here I am creating it using a simple bash script.
library(plumber) library(optparse) library(uuid) library(logger) MACHINE_ID <- "MAIN_1" PORT_NUMBER <- 8761 log_level(logger::TRACE) pr("tmp/api_v1.R") %>% pr_run(port = PORT_NUMBER)
·zstat.pl·
REST API in R with plumber
Shiny
Shiny
Shiny is a package that makes it easy to create interactive web apps using R and Python.
Shiny was designed with an emphasis on distinct input and output components in the UI. Inputs send values from the client to the server, and when the server has values for the client to display, they are received and rendered by outputs.
You want the server to trigger logic on the client that doesn’t naturally relate to any single output.
You want the server to update a specific (custom) output on the client, but not by totally invalidating the output and replacing the value, just making a targeted modification.
You have some client JavaScript that isn’t related to any particular input, yet wants to trigger some behavior in R. For example, binding keyboard shortcuts on the web page to R functions on the server, or alerting R when the size of the browser window has changed.
·shiny.posit.co·
Shiny
rstudio/swagger: Swagger is a collection of HTML, Javascript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API.
rstudio/swagger: Swagger is a collection of HTML, Javascript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API.
Swagger is a collection of HTML, Javascript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API. - rstudio/swagger
·github.com·
rstudio/swagger: Swagger is a collection of HTML, Javascript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API.