Found 12 bookmarks
Custom sorting
Long COVID: SARS-CoV-2 spike protein accumulation linked to long-lasting brain effects
Long COVID: SARS-CoV-2 spike protein accumulation linked to long-lasting brain effects
“The study shows that the SARS-CoV-2 spike protein remains in the brain's protective layers, the meninges, and the skull's bone marrow for up to four years after infection. This persistent presence of the spike protein could trigger chronic inflammation in affected individuals and increase the risk of neurodegenerative diseases.”
The study shows that the SARS-CoV-2 spike protein remains in the brain's protective layers, the meninges, and the skull's bone marrow for up to four years after infection. This persistent presence of the spike protein could trigger chronic inflammation in affected individuals and increase the risk of neurodegenerative diseases.
·medicalxpress.com·
Long COVID: SARS-CoV-2 spike protein accumulation linked to long-lasting brain effects
Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19
Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19

Evidence that a COVID-19 infection can induce neurological sequelae.

The SARSCoV2 spike protein can persist in the brain—skull bone marrow and meninges—to induce neurologic damage

SARS-CoV-2 spike protein accumulates & persists in the body for years after infection, especially in the skull-meninges-brain axis, potentially driving long COVID. mRNA vaccines help but cannot stop it.

In mice, it caused inflammation, anxiety, and worsened brain injuries. Vaccines reduced but did not fully eliminate it.

·cell.com·
Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19
Eric Topol on Twitter
Eric Topol on Twitter
Important new report on #LongCovid and the brain demonstrating persistence of the virus spike protein, throughout the body and particularly the skull-meninges axis, both in humans and the mouse model
·twitter.com·
Eric Topol on Twitter
Ali M. Erturk on Twitter
Ali M. Erturk on Twitter

60% of us who had COVID still might have lingering viral spikes in our heads! Our new study reveals SARS-CoV-2 spike accumulation in the skull-meninges-brain axis & its implications in long COVID. By @zhouyi_rong

@HongchengM

@Sakethkapoor 🔬🧠🦠🧵👇

·twitter.com·
Ali M. Erturk on Twitter
laurie allee on Twitter
laurie allee on Twitter
"Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation."
·twitter.com·
laurie allee on Twitter