Saved

Saved

#ai #tech #future
Gen Z and the End of Predictable Progress
Gen Z and the End of Predictable Progress
Gen Z faces a double disruption: AI-driven technological change and institutional instability Three distinct Gen Z cohorts have emerged, each with different relationships to digital reality A version of the barbell strategy is splitting career paths between "safety seekers" and "digital gamblers" Our fiscal reality is quite stark right now, and that is shaping how young people see opportunities
When I talk to young people from New York or Louisiana or Tennessee or California or DC or Indiana or Massachusetts about their futures, they're not just worried about finding jobs, they're worried about whether or not the whole concept of a "career" as we know it will exist in five years.
When a main path to financial security comes through the algorithmic gods rather than institutional advancement (like when a single viral TikTok can generate more income than a year of professional work) it fundamentally changes how people view everything from education to social structures to political systems that they’re apart of.
Gen Z 1.0: The Bridge Generation: This group watched the digital transformation happen in real-time, experiencing both the analog and internet worlds during formative years. They might view technology as a tool rather than an environment. They're young enough to navigate digital spaces fluently but old enough to remember alternatives. They (myself included) entered the workforce during Covid and might have severe workplace interaction gaps because they missed out on formative time during their early years. Gen Z 1.5: The Covid Cohort: This group hit major life milestones during a global pandemic. They entered college under Trump but graduated under Biden. This group has a particularly complex relationship with institutions. They watched traditional systems bend and break in real-time during Covid, while simultaneously seeing how digital infrastructure kept society functioning. Gen Z 2.0: The Digital Natives: This is the first group that will be graduate into the new digital economy. This group has never known a world without smartphones. To them, social media could be another layer of reality. Their understanding of economic opportunity is completely different from their older peers.
Gen Z 2.0 doesn't just use digital tools differently, they understand reality through a digital-first lens. Their identity formation happens through and with technology.
Technology enables new forms of value exchange, which creates new economic possibilities so people build identities around these possibilities and these identities drive development of new technologies and the cycle continues.
different generations don’t just use different tools, they operate in different economic realities and form identity through fundamentally different processes. Technology is accelerating differentiation. Economic paths are becoming more extreme. Identity formation is becoming more fluid.
I wrote a very long piece about why Trump won that focused on uncertainty, structural affordability, and fear - and that’s what the younger Gen Z’s are facing. Add AI into this mix, and the rocky path gets rockier. Traditional professional paths that once promised stability and maybe the ability to buy a house one day might not even exist in two years. Couple this with increased zero sum thinking, a lack of trust in institutions and subsequent institutional dismantling, and the whole attention economy thing, and you’ve got a group of young people who are going to be trying to find their footing in a whole new world. Of course you vote for the person promising to dismantle it and save you.
·kyla.substack.com·
Gen Z and the End of Predictable Progress
Dario Amodei — Machines of Loving Grace
Dario Amodei — Machines of Loving Grace
I think that most people are underestimating just how radical the upside of AI could be, just as I think most people are underestimating how bad the risks could be.
the effects of powerful AI are likely to be even more unpredictable than past technological changes, so all of this is unavoidably going to consist of guesses. But I am aiming for at least educated and useful guesses, which capture the flavor of what will happen even if most details end up being wrong. I’m including lots of details mainly because I think a concrete vision does more to advance discussion than a highly hedged and abstract one.
I am often turned off by the way many AI risk public figures (not to mention AI company leaders) talk about the post-AGI world, as if it’s their mission to single-handedly bring it about like a prophet leading their people to salvation. I think it’s dangerous to view companies as unilaterally shaping the world, and dangerous to view practical technological goals in essentially religious terms.
AI companies talking about all the amazing benefits of AI can come off like propagandists, or as if they’re attempting to distract from downsides.
the small community of people who do discuss radical AI futures often does so in an excessively “sci-fi” tone (featuring e.g. uploaded minds, space exploration, or general cyberpunk vibes). I think this causes people to take the claims less seriously, and to imbue them with a sort of unreality. To be clear, the issue isn’t whether the technologies described are possible or likely (the main essay discusses this in granular detail)—it’s more that the “vibe” connotatively smuggles in a bunch of cultural baggage and unstated assumptions about what kind of future is desirable, how various societal issues will play out, etc. The result often ends up reading like a fantasy for a narrow subculture, while being off-putting to most people.
Yet despite all of the concerns above, I really do think it’s important to discuss what a good world with powerful AI could look like, while doing our best to avoid the above pitfalls. In fact I think it is critical to have a genuinely inspiring vision of the future, and not just a plan to fight fires.
The five categories I am most excited about are: Biology and physical health Neuroscience and mental health Economic development and poverty Peace and governance Work and meaning
We could summarize this as a “country of geniuses in a datacenter”.
you might think that the world would be instantly transformed on the scale of seconds or days (“the Singularity”), as superior intelligence builds on itself and solves every possible scientific, engineering, and operational task almost immediately. The problem with this is that there are real physical and practical limits, for example around building hardware or conducting biological experiments. Even a new country of geniuses would hit up against these limits. Intelligence may be very powerful, but it isn’t magic fairy dust.
I believe that in the AI age, we should be talking about the marginal returns to intelligence7, and trying to figure out what the other factors are that are complementary to intelligence and that become limiting factors when intelligence is very high. We are not used to thinking in this way—to asking “how much does being smarter help with this task, and on what timescale?”—but it seems like the right way to conceptualize a world with very powerful AI.
in science many experiments are often needed in sequence, each learning from or building on the last. All of this means that the speed at which a major project—for example developing a cancer cure—can be completed may have an irreducible minimum that cannot be decreased further even as intelligence continues to increase.
Sometimes raw data is lacking and in its absence more intelligence does not help. Today’s particle physicists are very ingenious and have developed a wide range of theories, but lack the data to choose between them because particle accelerator data is so limited. It is not clear that they would do drastically better if they were superintelligent—other than perhaps by speeding up the construction of a bigger accelerator.
Many things cannot be done without breaking laws, harming humans, or messing up society. An aligned AI would not want to do these things (and if we have an unaligned AI, we’re back to talking about risks). Many human societal structures are inefficient or even actively harmful, but are hard to change while respecting constraints like legal requirements on clinical trials, people’s willingness to change their habits, or the behavior of governments. Examples of advances that work well in a technical sense, but whose impact has been substantially reduced by regulations or misplaced fears, include nuclear power, supersonic flight, and even elevators
Thus, we should imagine a picture where intelligence is initially heavily bottlenecked by the other factors of production, but over time intelligence itself increasingly routes around the other factors, even if they never fully dissolve (and some things like physical laws are absolute)10. The key question is how fast it all happens and in what order.
I am not talking about AI as merely a tool to analyze data. In line with the definition of powerful AI at the beginning of this essay, I’m talking about using AI to perform, direct, and improve upon nearly everything biologists do.
CRISPR was a naturally occurring component of the immune system in bacteria that’s been known since the 80’s, but it took another 25 years for people to realize it could be repurposed for general gene editing. They also are often delayed many years by lack of support from the scientific community for promising directions (see this profile on the inventor of mRNA vaccines; similar stories abound). Third, successful projects are often scrappy or were afterthoughts that people didn’t initially think were promising, rather than massively funded efforts. This suggests that it’s not just massive resource concentration that drives discoveries, but ingenuity.
there are hundreds of these discoveries waiting to be made if scientists were smarter and better at making connections between the vast amount of biological knowledge humanity possesses (again consider the CRISPR example). The success of AlphaFold/AlphaProteo at solving important problems much more effectively than humans, despite decades of carefully designed physics modeling, provides a proof of principle (albeit with a narrow tool in a narrow domain) that should point the way forward.
·darioamodei.com·
Dario Amodei — Machines of Loving Grace
How Perplexity builds product
How Perplexity builds product
inside look at how Perplexity builds product—which to me feels like what the future of product development will look like for many companies:AI-first: They’ve been asking AI questions about every step of the company-building process, including “How do I launch a product?” Employees are encouraged to ask AI before bothering colleagues.Organized like slime mold: They optimize for minimizing coordination costs by parallelizing as much of each project as possible.Small teams: Their typical team is two to three people. Their AI-generated (highly rated) podcast was built and is run by just one person.Few managers: They hire self-driven ICs and actively avoid hiring people who are strongest at guiding other people’s work.A prediction for the future: Johnny said, “If I had to guess, technical PMs or engineers with product taste will become the most valuable people at a company over time.”
Typical projects we work on only have one or two people on it. The hardest projects have three or four people, max. For example, our podcast is built by one person end to end. He’s a brand designer, but he does audio engineering and he’s doing all kinds of research to figure out how to build the most interactive and interesting podcast. I don’t think a PM has stepped into that process at any point.
We leverage product management most when there’s a really difficult decision that branches into many directions, and for more involved projects.
The hardest, and most important, part of the PM’s job is having taste around use cases. With AI, there are way too many possible use cases that you could work on. So the PM has to step in and make a branching qualitative decision based on the data, user research, and so on.
a big problem with AI is how you prioritize between more productivity-based use cases versus the engaging chatbot-type use cases.
we look foremost for flexibility and initiative. The ability to build constructively in a limited-resource environment (potentially having to wear several hats) is the most important to us.
We look for strong ICs with clear quantitative impacts on users rather than within their company. If I see the terms “Agile expert” or “scrum master” in the resume, it’s probably not going to be a great fit.
My goal is to structure teams around minimizing “coordination headwind,” as described by Alex Komoroske in this deck on seeing organizations as slime mold. The rough idea is that coordination costs (caused by uncertainty and disagreements) increase with scale, and adding managers doesn’t improve things. People’s incentives become misaligned. People tend to lie to their manager, who lies to their manager. And if you want to talk to someone in another part of the org, you have to go up two levels and down two levels, asking everyone along the way.
Instead, what you want to do is keep the overall goals aligned, and parallelize projects that point toward this goal by sharing reusable guides and processes.
Perplexity has existed for less than two years, and things are changing so quickly in AI that it’s hard to commit beyond that. We create quarterly plans. Within quarters, we try to keep plans stable within a product roadmap. The roadmap has a few large projects that everyone is aware of, along with small tasks that we shift around as priorities change.
Each week we have a kickoff meeting where everyone sets high-level expectations for their week. We have a culture of setting 75% weekly goals: everyone identifies their top priority for the week and tries to hit 75% of that by the end of the week. Just a few bullet points to make sure priorities are clear during the week.
All objectives are measurable, either in terms of quantifiable thresholds or Boolean “was X completed or not.” Our objectives are very aggressive, and often at the end of the quarter we only end up completing 70% in one direction or another. The remaining 30% helps identify gaps in prioritization and staffing.
At the beginning of each project, there is a quick kickoff for alignment, and afterward, iteration occurs in an asynchronous fashion, without constraints or review processes. When individuals feel ready for feedback on designs, implementation, or final product, they share it in Slack, and other members of the team give honest and constructive feedback. Iteration happens organically as needed, and the product doesn’t get launched until it gains internal traction via dogfooding.
all teams share common top-level metrics while A/B testing within their layer of the stack. Because the product can shift so quickly, we want to avoid political issues where anyone’s identity is bound to any given component of the product.
We’ve found that when teams don’t have a PM, team members take on the PM responsibilities, like adjusting scope, making user-facing decisions, and trusting their own taste.
What’s your primary tool for task management, and bug tracking?Linear. For AI products, the line between tasks, bugs, and projects becomes blurred, but we’ve found many concepts in Linear, like Leads, Triage, Sizing, etc., to be extremely important. A favorite feature of mine is auto-archiving—if a task hasn’t been mentioned in a while, chances are it’s not actually important.The primary tool we use to store sources of truth like roadmaps and milestone planning is Notion. We use Notion during development for design docs and RFCs, and afterward for documentation, postmortems, and historical records. Putting thoughts on paper (documenting chain-of-thought) leads to much clearer decision-making, and makes it easier to align async and avoid meetings.Unwrap.ai is a tool we’ve also recently introduced to consolidate, document, and quantify qualitative feedback. Because of the nature of AI, many issues are not always deterministic enough to classify as bugs. Unwrap groups individual pieces of feedback into more concrete themes and areas of improvement.
High-level objectives and directions come top-down, but a large amount of new ideas are floated bottom-up. We believe strongly that engineering and design should have ownership over ideas and details, especially for an AI product where the constraints are not known until ideas are turned into code and mock-ups.
Big challenges today revolve around scaling from our current size to the next level, both on the hiring side and in execution and planning. We don’t want to lose our core identity of working in a very flat and collaborative environment. Even small decisions, like how to organize Slack and Linear, can be tough to scale. Trying to stay transparent and scale the number of channels and projects without causing notifications to explode is something we’re currently trying to figure out.
·lennysnewsletter.com·
How Perplexity builds product
Synthography – An Invitation to Reconsider the Rapidly Changing Toolkit of Digital Image Creation as a New Genre Beyond Photography
Synthography – An Invitation to Reconsider the Rapidly Changing Toolkit of Digital Image Creation as a New Genre Beyond Photography
With the comprehensive application of Artificial Intelligence into the creation and post production of images, it seems questionable if the resulting visualisations can still be considered ‘photographs’ in a classical sense – drawing with light. Automation has been part of the popular strain of photography since its inception, but even the amateurs with only basic knowledge of the craft could understand themselves as author of their images. We state a legitimation crisis for the current usage of the term. This paper is an invitation to consider Synthography as a term for a new genre for image production based on AI, observing the current occurrence and implementation in consumer cameras and post-production.
·link.springer.com·
Synthography – An Invitation to Reconsider the Rapidly Changing Toolkit of Digital Image Creation as a New Genre Beyond Photography