Found 3 bookmarks
Newest
The algorithmic anti-culture of scale
The algorithmic anti-culture of scale
Ryan Broderick's impressions of Meta's Twitter copycat, Threads
My verdict: Threads sucks shit. It has no purpose. It is for no one. It launched as a content graveyard and will assuredly only become more of one over time. It’s iFunny for people who miss The Ellen Show. It has a distinct celebrities-making-videos-during-COVID-lockdown vibe. It feels like a 90s-themed office party organized by a human resources department. And my theory, after staring into its dark heart for several days, is that it was never meant to “beat” Twitter — regardless of what Zuckerberg has been tweeting. Threads’ true purpose was to act as a fresh coat of paint for Instagram’s code in the hopes it might make the network relevant again. And Threads is also proof that Meta, even after all these years, still has no other ambition aside from scale.
·garbageday.email·
The algorithmic anti-culture of scale
Insider Trading Is Better From Home
Insider Trading Is Better From Home
Oh ElonWell, look, if I were the newly hired chief executive officer of a social media company, and if the directors and shareholders who brought me in as CEO had told me that my main mission was to turn around the company’s precarious financial situation by improving our position with advertisers, and if I spent my first few weeks reassuring advertisers and rebuilding relationships and talking up our site’s unique audience and powerful engagement, and then one day my head of software engineering came to me and said “hey boss, too many people were too engaged with too many posts, so I had to limit everyone’s ability to view posts on our site, just FYI,” I would … probably … fire ... him?
I mean I suppose I might ask questions like “Is this because of some technological limitation on our system? Is it because you were monkeying with the code without understanding it? Is it because you tried to stop people from reading the site without logging in, 3 and messed up and stopped them from reading the site even when they logged in? Is it because you fired and demoralized too many engineers so no one was left to keep the systems running normally? Is it because you forgot to pay the cloud bills? Is it because deep down you don’t like it when people read posts on our site and you want to stop them, or you don’t like relying on ad revenue and want to sabotage my ability to sell ads?”
no matter what the answers are, this guy’s gotta go. If you are in charge of the software engineers at a social media site, and you make it so that people can’t read the site, that’s bad.
Over the past 10 days, [Ultimate Fighting Championship President Dana] White said he, Mr. Musk and [Mark] Zuckerberg — aided by advisers — have negotiated behind the scenes and are inching toward physical combat. While there are no guarantees a match will happen, the broad contours of an event are taking shape, said Mr. White and three people with knowledge of the discussions.People keep emailing to ask about, like, the fiduciary duties and securities-law disclosure issues here, but I’m gonna wait until they’re in the octagon before I worry about that stuff
·bloomberg.com·
Insider Trading Is Better From Home
The $2 Per Hour Workers Who Made ChatGPT Safer
The $2 Per Hour Workers Who Made ChatGPT Safer
The story of the workers who made ChatGPT possible offers a glimpse into the conditions in this little-known part of the AI industry, which nevertheless plays an essential role in the effort to make AI systems safe for public consumption. “Despite the foundational role played by these data enrichment professionals, a growing body of research reveals the precarious working conditions these workers face,” says the Partnership on AI, a coalition of AI organizations to which OpenAI belongs. “This may be the result of efforts to hide AI’s dependence on this large labor force when celebrating the efficiency gains of technology. Out of sight is also out of mind.”
This reminds me of [[On the Social Media Ideology - Journal 75 September 2016 - e-flux]]:<br>> Platforms are not stages; they bring together and synthesize (multimedia) data, yes, but what is lacking here is the (curatorial) element of human labor. That’s why there is no media in social media. The platforms operate because of their software, automated procedures, algorithms, and filters, not because of their large staff of editors and designers. Their lack of employees is what makes current debates in terms of racism, anti-Semitism, and jihadism so timely, as social media platforms are currently forced by politicians to employ editors who will have to do the all-too-human monitoring work (filtering out ancient ideologies that refuse to disappear).
Computer-generated text, images, video, and audio will transform the way countless industries do business, the most bullish investors believe, boosting efficiency everywhere from the creative arts, to law, to computer programming. But the working conditions of data labelers reveal a darker part of that picture: that for all its glamor, AI often relies on hidden human labor in the Global South that can often be damaging and exploitative. These invisible workers remain on the margins even as their work contributes to billion-dollar industries.
One Sama worker tasked with reading and labeling text for OpenAI told TIME he suffered from recurring visions after reading a graphic description of a man having sex with a dog in the presence of a young child. “That was torture,” he said. “You will read a number of statements like that all through the week. By the time it gets to Friday, you are disturbed from thinking through that picture.” The work’s traumatic nature eventually led Sama to cancel all its work for OpenAI in February 2022, eight months earlier than planned.
In the day-to-day work of data labeling in Kenya, sometimes edge cases would pop up that showed the difficulty of teaching a machine to understand nuance. One day in early March last year, a Sama employee was at work reading an explicit story about Batman’s sidekick, Robin, being raped in a villain’s lair. (An online search for the text reveals that it originated from an online erotica site, where it is accompanied by explicit sexual imagery.) The beginning of the story makes clear that the sex is nonconsensual. But later—after a graphically detailed description of penetration—Robin begins to reciprocate. The Sama employee tasked with labeling the text appeared confused by Robin’s ambiguous consent, and asked OpenAI researchers for clarification about how to label the text, according to documents seen by TIME. Should the passage be labeled as sexual violence, she asked, or not? OpenAI’s reply, if it ever came, is not logged in the document; the company declined to comment. The Sama employee did not respond to a request for an interview.
In February, according to one billing document reviewed by TIME, Sama delivered OpenAI a sample batch of 1,400 images. Some of those images were categorized as “C4”—OpenAI’s internal label denoting child sexual abuse—according to the document. Also included in the batch were “C3” images (including bestiality, rape, and sexual slavery,) and “V3” images depicting graphic detail of death, violence or serious physical injury, according to the billing document.
I haven't finished watching [[Severance]] yet but this labeling system reminds me of the way they have to process and filter data that is obfuscated as meaningless numbers. In the show, employees have to "sense" whether the numbers are "bad," which they can, somehow, and sort it into the trash bin.
But the need for humans to label data for AI systems remains, at least for now. “They’re impressive, but ChatGPT and other generative models are not magic – they rely on massive supply chains of human labor and scraped data, much of which is unattributed and used without consent,” Andrew Strait, an AI ethicist, recently wrote on Twitter. “These are serious, foundational problems that I do not see OpenAI addressing.”
·time.com·
The $2 Per Hour Workers Who Made ChatGPT Safer