Found 5 bookmarks
Newest
DeepSeek isn't a victory for the AI sceptics
DeepSeek isn't a victory for the AI sceptics
we now know that as the price of computing equipment fell, new use cases emerged to fill the gap – which is why today my lightbulbs have semiconductors inside them, and I occasionally have to install firmware updates my doorbell.
surely the compute freed up by more efficient models will be used to train models even harder, and apply even more “brain power” to coming up with responses? Even if DeepSeek is dramatically more efficient, the logical thing to do will be to use the excess capacity to ensure the answers are even smarter.
ure, if DeepSeek heralds a new era of much leaner LLMs, it’s not great news in the short term if you’re a shareholder in Nvidia, Microsoft, Meta or Google.6 But if DeepSeek is the enormous breakthrough it appears, it just became even cheaper to train and use the most sophisticated models humans have so far built, by one or more orders of magnitude. Which is amazing news for big tech, because it means that AI usage is going to be even more ubiquitous.
·takes.jamesomalley.co.uk·
DeepSeek isn't a victory for the AI sceptics
Your "Per-Seat" Margin is My Opportunity
Your "Per-Seat" Margin is My Opportunity

Traditional software is sold on a per seat subscription. More humans, more money. We are headed to a future where AI agents will replace the work humans do. But you can’t charge agents a per seat cost. So we’re headed to a world where software will be sold on a consumption model (think tasks) and then on an outcome model (think job completed) Incumbents will be forced to adapt but it’s classic innovators dilemma. How do you suddenly give up all that subscription revenue? This gives an opportunity for startups to win.

Per-seat pricing only works when your users are human. But when agents become the primary users of software, that model collapses.
Executives aren't evaluating software against software anymore. They're comparing the combined costs of software licenses plus labor against pure outcome-based solutions. Think customer support (per resolved ticket vs. per agent + seat), marketing (per campaign vs. headcount), sales (per qualified lead vs. rep). That's your pricing umbrella—the upper limit enterprises will pay before switching entirely to AI.
enterprises are used to deterministic outcomes and fixed annual costs. Usage-based pricing makes budgeting harder. But individual leaders seeing 10x efficiency gains won't wait for procurement to catch up. Savvy managers will find ways around traditional buying processes.
This feels like a generational reset of how businesses operate. Zero upfront costs, pay only for outcomes—that's not just a pricing model. That's the future of business.
The winning strategy in my books? Give the platform away for free. Let your agents read and write to existing systems through unstructured data—emails, calls, documents. Once you handle enough workflows, you become the new system of record.
·writing.nikunjk.com·
Your "Per-Seat" Margin is My Opportunity
Dario Amodei — Machines of Loving Grace
Dario Amodei — Machines of Loving Grace
I think that most people are underestimating just how radical the upside of AI could be, just as I think most people are underestimating how bad the risks could be.
the effects of powerful AI are likely to be even more unpredictable than past technological changes, so all of this is unavoidably going to consist of guesses. But I am aiming for at least educated and useful guesses, which capture the flavor of what will happen even if most details end up being wrong. I’m including lots of details mainly because I think a concrete vision does more to advance discussion than a highly hedged and abstract one.
I am often turned off by the way many AI risk public figures (not to mention AI company leaders) talk about the post-AGI world, as if it’s their mission to single-handedly bring it about like a prophet leading their people to salvation. I think it’s dangerous to view companies as unilaterally shaping the world, and dangerous to view practical technological goals in essentially religious terms.
AI companies talking about all the amazing benefits of AI can come off like propagandists, or as if they’re attempting to distract from downsides.
the small community of people who do discuss radical AI futures often does so in an excessively “sci-fi” tone (featuring e.g. uploaded minds, space exploration, or general cyberpunk vibes). I think this causes people to take the claims less seriously, and to imbue them with a sort of unreality. To be clear, the issue isn’t whether the technologies described are possible or likely (the main essay discusses this in granular detail)—it’s more that the “vibe” connotatively smuggles in a bunch of cultural baggage and unstated assumptions about what kind of future is desirable, how various societal issues will play out, etc. The result often ends up reading like a fantasy for a narrow subculture, while being off-putting to most people.
Yet despite all of the concerns above, I really do think it’s important to discuss what a good world with powerful AI could look like, while doing our best to avoid the above pitfalls. In fact I think it is critical to have a genuinely inspiring vision of the future, and not just a plan to fight fires.
The five categories I am most excited about are: Biology and physical health Neuroscience and mental health Economic development and poverty Peace and governance Work and meaning
We could summarize this as a “country of geniuses in a datacenter”.
you might think that the world would be instantly transformed on the scale of seconds or days (“the Singularity”), as superior intelligence builds on itself and solves every possible scientific, engineering, and operational task almost immediately. The problem with this is that there are real physical and practical limits, for example around building hardware or conducting biological experiments. Even a new country of geniuses would hit up against these limits. Intelligence may be very powerful, but it isn’t magic fairy dust.
I believe that in the AI age, we should be talking about the marginal returns to intelligence7, and trying to figure out what the other factors are that are complementary to intelligence and that become limiting factors when intelligence is very high. We are not used to thinking in this way—to asking “how much does being smarter help with this task, and on what timescale?”—but it seems like the right way to conceptualize a world with very powerful AI.
in science many experiments are often needed in sequence, each learning from or building on the last. All of this means that the speed at which a major project—for example developing a cancer cure—can be completed may have an irreducible minimum that cannot be decreased further even as intelligence continues to increase.
Sometimes raw data is lacking and in its absence more intelligence does not help. Today’s particle physicists are very ingenious and have developed a wide range of theories, but lack the data to choose between them because particle accelerator data is so limited. It is not clear that they would do drastically better if they were superintelligent—other than perhaps by speeding up the construction of a bigger accelerator.
Many things cannot be done without breaking laws, harming humans, or messing up society. An aligned AI would not want to do these things (and if we have an unaligned AI, we’re back to talking about risks). Many human societal structures are inefficient or even actively harmful, but are hard to change while respecting constraints like legal requirements on clinical trials, people’s willingness to change their habits, or the behavior of governments. Examples of advances that work well in a technical sense, but whose impact has been substantially reduced by regulations or misplaced fears, include nuclear power, supersonic flight, and even elevators
Thus, we should imagine a picture where intelligence is initially heavily bottlenecked by the other factors of production, but over time intelligence itself increasingly routes around the other factors, even if they never fully dissolve (and some things like physical laws are absolute)10. The key question is how fast it all happens and in what order.
I am not talking about AI as merely a tool to analyze data. In line with the definition of powerful AI at the beginning of this essay, I’m talking about using AI to perform, direct, and improve upon nearly everything biologists do.
CRISPR was a naturally occurring component of the immune system in bacteria that’s been known since the 80’s, but it took another 25 years for people to realize it could be repurposed for general gene editing. They also are often delayed many years by lack of support from the scientific community for promising directions (see this profile on the inventor of mRNA vaccines; similar stories abound). Third, successful projects are often scrappy or were afterthoughts that people didn’t initially think were promising, rather than massively funded efforts. This suggests that it’s not just massive resource concentration that drives discoveries, but ingenuity.
there are hundreds of these discoveries waiting to be made if scientists were smarter and better at making connections between the vast amount of biological knowledge humanity possesses (again consider the CRISPR example). The success of AlphaFold/AlphaProteo at solving important problems much more effectively than humans, despite decades of carefully designed physics modeling, provides a proof of principle (albeit with a narrow tool in a narrow domain) that should point the way forward.
·darioamodei.com·
Dario Amodei — Machines of Loving Grace
The Dawn of Mediocre Computing
The Dawn of Mediocre Computing
I’ll take an inventory in a future post, but here’s one as a sample: AIs can be used to generate “deep fakes” while cryptographic techniques can be used to reliably authenticate things against such fakery. Flipping it around, crypto is a target-rich environment for scammers and hackers, and machine learning can be used to audit crypto code for vulnerabilities. I am convinced there is something deeper going on here. This reeks of real yin-yangery that extends to the roots of computing somehow.
·studio.ribbonfarm.com·
The Dawn of Mediocre Computing