Found 11 bookmarks
Newest
A Student's Guide to Startups
A Student's Guide to Startups
Most startups end up doing something different than they planned. The way the successful ones find something that works is by trying things that don't. So the worst thing you can do in a startup is to have a rigid, pre-ordained plan and then start spending a lot of money to implement it. Better to operate cheaply and give your ideas time to evolve.
Successful startups are almost never started by one person. Usually they begin with a conversation in which someone mentions that something would be a good idea for a company, and his friend says, "Yeah, that is a good idea, let's try it." If you're missing that second person who says "let's try it," the startup never happens. And that is another area where undergrads have an edge. They're surrounded by people willing to say that.
Look for the people who keep starting projects, and finish at least some of them. That's what we look for. Above all else, above academic credentials and even the idea you apply with, we look for people who build things.
You need a certain activation energy to start a startup. So an employer who's fairly pleasant to work for can lull you into staying indefinitely, even if it would be a net win for you to leave.
Most people look at a company like Apple and think, how could I ever make such a thing? Apple is an institution, and I'm just a person. But every institution was at one point just a handful of people in a room deciding to start something. Institutions are made up, and made up by people no different from you.
What goes wrong with young founders is that they build stuff that looks like class projects. It was only recently that we figured this out ourselves. We noticed a lot of similarities between the startups that seemed to be falling behind, but we couldn't figure out how to put it into words. Then finally we realized what it was: they were building class projects.
Class projects will inevitably solve fake problems. For one thing, real problems are rare and valuable. If a professor wanted to have students solve real problems, he'd face the same paradox as someone trying to give an example of whatever "paradigm" might succeed the Standard Model of physics. There may well be something that does, but if you could think of an example you'd be entitled to the Nobel Prize. Similarly, good new problems are not to be had for the asking.
real startups tend to discover the problem they're solving by a process of evolution. Someone has an idea for something; they build it; and in doing so (and probably only by doing so) they realize the problem they should be solving is another one.
Professors will tend to judge you by the distance between the starting point and where you are now. If someone has achieved a lot, they should get a good grade. But customers will judge you from the other direction: the distance remaining between where you are now and the features they need. The market doesn't give a shit how hard you worked. Users just want your software to do what they need, and you get a zero otherwise. That is one of the most distinctive differences between school and the real world: there is no reward for putting in a good effort. In fact, the whole concept of a "good effort" is a fake idea adults invented to encourage kids. It is not found in nature.
unfortunately when you graduate they don't give you a list of all the lies they told you during your education. You have to get them beaten out of you by contact with the real world.
really what work experience refers to is not some specific expertise, but the elimination of certain habits left over from childhood.
One of the defining qualities of kids is that they flake. When you're a kid and you face some hard test, you can cry and say "I can't" and they won't make you do it. Of course, no one can make you do anything in the grownup world either. What they do instead is fire you. And when motivated by that you find you can do a lot more than you realized. So one of the things employers expect from someone with "work experience" is the elimination of the flake reflex—the ability to get things done, with no excuses.
Fundamentally the equation is a brutal one: you have to spend most of your waking hours doing stuff someone else wants, or starve. There are a few places where the work is so interesting that this is concealed, because what other people want done happens to coincide with what you want to work on.
So the most important advantage 24 year old founders have over 20 year old founders is that they know what they're trying to avoid. To the average undergrad the idea of getting rich translates into buying Ferraris, or being admired. To someone who has learned from experience about the relationship between money and work, it translates to something way more important: it means you get to opt out of the brutal equation that governs the lives of 99.9% of people. Getting rich means you can stop treading water.
You don't get money just for working, but for doing things other people want. Someone who's figured that out will automatically focus more on the user. And that cures the other half of the class-project syndrome. After you've been working for a while, you yourself tend to measure what you've done the same way the market does.
the most important skill for a startup founder isn't a programming technique. It's a knack for understanding users and figuring out how to give them what they want. I know I repeat this, but that's because it's so important. And it's a skill you can learn, though perhaps habit might be a better word. Get into the habit of thinking of software as having users. What do those users want? What would make them say wow?
·paulgraham.com·
A Student's Guide to Startups
Interview with Kevin Kelly,editor, author, and futurist
Interview with Kevin Kelly,editor, author, and futurist
To write about something hard to explain, write a detailed letter to a friend about why it is so hard to explain, and then remove the initial “Dear Friend” part and you’ll have a great first draft.
To be interesting just tell your story with uncommon honesty.
Most articles and stories are improved significantly if you delete the first page of the manuscript draft. Immediately start with the action.
Each technology can not stand alone. It takes a saw to make a hammer and it takes a hammer to make a saw. And it takes both tools to make a computer, and in today’s factory it takes a computer to make saws and hammers. This co-dependency creates an ecosystem of highly interdependent technologies that support each other
On the other hand, I see this technium as an extension of the same self-organizing system responsible for the evolution of life on this planet. The technium is evolution accelerated. A lot of the same dynamics that propel evolution are also at work in the technium
Our technologies are ultimately not contrary to life, but are in fact an extension of life, enabling it to develop yet more options and possibilities at a faster rate. Increasing options and possibilities is also known as progress, so in the end, what the technium brings us humans is progress.
Libraries, journals, communication networks, and the accumulation of other technologies help create the next idea, beyond the efforts of a single individual
We also see near-identical parallel inventions of tricky contraptions like slingshots and blowguns. However, because it was so ancient, we don’t have a lot of data for this behavior. What we would really like is to have a N=100 study of hundreds of other technological civilizations in our galaxy. From that analysis we’d be able to measure, outline, and predict the development of technologies. That is a key reason to seek extraterrestrial life.
When information is processed in a computer, it is being ceaselessly replicated and re-copied while it computes. Information wants to be copied. Therefore, when certain people get upset about the ubiquitous copying happening in the technium, their misguided impulse is to stop the copies. They want to stamp out rampant copying in the name of "copy protection,” whether it be music, science journals, or art for AI training. But the emergent behavior of the technium is to copy promiscuously. To ban, outlaw, or impede the superconductivity of copies is to work against the grain of the system.
the worry of some environmentalists is that technology can only contribute more to the problem and none to the solution. They believe that tech is incapable of being green because it is the source of relentless consumerism at the expense of diminishing nature, and that our technological civilization requires endless growth to keep the system going. I disagree.
Over time evolution arranges the same number of atoms in more complex patterns to yield more complex organisms, for instance producing an agile lemur the same size and weight as a jelly fish. We seek the same shift in the technium. Standard economic growth aims to get consumers to drink more wine. Type 2 growth aims to get them to not drink more wine, but better wine.
[[An optimistic view of capitalism]]
to measure (and thus increase) productivity we count up the number of refrigerators manufactured and sold each year. More is generally better. But this counting tends to overlook the fact that refrigerators have gotten better over time. In addition to making cold, they now dispense ice cubes, or self-defrost, and use less energy. And they may cost less in real dollars. This betterment is truly real value, but is not accounted for in the “more” column
it is imperative that we figure out how to shift more of our type 1 growth to type 2 growth, because we won’t be able to keep expanding the usual “more.”  We will have to perfect a system that can keep improving and getting better with fewer customers each year, smaller markets and audiences, and fewer workers. That is a huge shift from the past few centuries where every year there has been more of everything.
“degrowthers” are correct in that there are limits to bulk growth — and running out of humans may be one of them. But they don’t seem to understand that evolutionary growth, which includes the expansion of intangibles such as freedom, wisdom, and complexity, doesn’t have similar limits. We can always figure out a way to improve things, even without using more stuff — especially without using more stuff!
the technium is not inherently contrary to nature; it is inherently derived from evolution and thus inherently capable of being compatible with nature. We can choose to create versions of the technium that are aligned with the natural world.
Social media can transmit false information at great range at great speed. But compared to what? Social media's influence on elections from transmitting false information was far less than the influence of the existing medias of cable news and talk radio, where false information was rampant. Did anyone seriously suggest we should regulate what cable news hosts or call in radio listeners could say? Bullying middle schoolers on social media? Compared to what? Does it even register when compared to the bullying done in school hallways? Radicalization on YouTube? Compared to talk radio? To googling?
Kids are inherently obsessive about new things, and can become deeply infatuated with stuff that they outgrow and abandon a few years later. So the fact they may be infatuated with social media right now should not in itself be alarming. Yes, we should indeed understand how it affects children and how to enhance its benefits, but it is dangerous to construct national policies for a technology based on the behavior of children using it.
Since it is the same technology, inspecting how it is used in other parts of the world would help us isolate what is being caused by the technology and what is being caused by the peculiar culture of the US.
You don’t notice what difference you make because of the platform's humongous billions-scale. In aggregate your choices make a difference which direction it — or any technology — goes. People prefer to watch things on demand, so little by little, we have steered the technology to let us binge watch. Streaming happened without much regulation or even enthusiasm of the media companies. Street usage is the fastest and most direct way to steer tech.
Vibrators instead of the cacophony of ringing bells on cell phones is one example of a marketplace technological solution
The long-term effects of AI will affect our society to a greater degree than electricity and fire, but its full effects will take centuries to play out. That means that we’ll be arguing, discussing, and wrangling with the changes brought about by AI for the next 10 decades. Because AI operates so close to our own inner self and identity, we are headed into a century-long identity crisis.
What we tend to call AI, will not be considered AI years from now
What we are discovering is that many of the cognitive tasks we have been doing as humans are dumber than they seem. Playing chess was more mechanical than we thought. Playing the game Go is more mechanical than we thought. Painting a picture and being creative was more mechanical than we thought. And even writing a paragraph with words turns out to be more mechanical than we thought
out of the perhaps dozen of cognitive modes operating in our minds, we have managed to synthesize two of them: perception and pattern matching. Everything we’ve seen so far in AI is because we can produce those two modes. We have not made any real progress in synthesizing symbolic logic and deductive reasoning and other modes of thinking
we are slowly realizing we still have NO IDEA how our own intelligences really work, or even what intelligence is. A major byproduct of AI is that it will tell us more about our minds than centuries of psychology and neuroscience have
There is no monolithic AI. Instead there will be thousands of species of AIs, each engineered to optimize different ways of thinking, doing different jobs
Now from the get-go we assume there will be significant costs and harms of anything new, which was not the norm in my parent's generation
The astronomical volume of money and greed flowing through this frontier overwhelmed and disguised whatever value it may have had
The sweet elegance of blockchain enables decentralization, which is a perpetually powerful force. This tech just has to be matched up to the tasks — currently not visible — where it is worth paying the huge cost that decentralization entails. That is a big ask, but taking the long-view, this moment may not be a failure
My generic career advice for young people is that if at all possible, you should aim to work on something that no one has a word for. Spend your energies where we don’t have a name for what you are doing, where it takes a while to explain to your mother what it is you do. When you are ahead of language, that means you are in a spot where it is more likely you are working on things that only you can do. It also means you won’t have much competition.
Your 20s are the perfect time to do a few things that are unusual, weird, bold, risky, unexplainable, crazy, unprofitable, and looks nothing like “success.” The less this time looks like success, the better it will be as a foundation
·noahpinion.substack.com·
Interview with Kevin Kelly,editor, author, and futurist
Embracing Being a Generalist.
Embracing Being a Generalist.
Generalists can pursue broader themes, questions, and lenses which, across their interests give them a deep perspective from breadth.For example, a specialist is someone who is obsessed with chess and spends their waking hours practicing, playing, and studying.A generalist is someone who is obsessed with the idea of game-play, and has researched and gone deep on sports, childhood psychology, board games, and philosophy.
Embracing being a coordinate on the map for a point in time is about allowing yourself to be seen as something specific. Generalists can feel trapped by that but the truth is being specific, and being on the map for others is a way of being in service. If you never pin yourself down (just for a time) you miss the benefits of being connected or in service.
·caffeine.blog·
Embracing Being a Generalist.