Found 6 bookmarks
Newest
What Apple's AI Tells Us: Experimental Models⁴
What Apple's AI Tells Us: Experimental Models⁴
Companies are exploring various approaches, from large, less constrained frontier models to smaller, more focused models that run on devices. Apple's AI focuses on narrow, practical use cases and strong privacy measures, while companies like OpenAI and Anthropic pursue the goal of AGI.
the most advanced generalist AI models often outperform specialized models, even in the specific domains those specialized models were designed for. That means that if you want a model that can do a lot - reason over massive amounts of text, help you generate ideas, write in a non-robotic way — you want to use one of the three frontier models: GPT-4o, Gemini 1.5, or Claude 3 Opus.
Working with advanced models is more like working with a human being, a smart one that makes mistakes and has weird moods sometimes. Frontier models are more likely to do extraordinary things but are also more frustrating and often unnerving to use. Contrast this with Apple’s narrow focus on making AI get stuff done for you.
Every major AI company argues the technology will evolve further and has teased mysterious future additions to their systems. In contrast, what we are seeing from Apple is a clear and practical vision of how AI can help most users, without a lot of effort, today. In doing so, they are hiding much of the power, and quirks, of LLMs from their users. Having companies take many approaches to AI is likely to lead to faster adoption in the long term. And, as companies experiment, we will learn more about which sets of models are correct.
·oneusefulthing.org·
What Apple's AI Tells Us: Experimental Models⁴
Apple Intelligence is Right On Time
Apple Intelligence is Right On Time

Summary

  • Apple remains primarily a hardware company, and an AI-mediated future will still require devices, playing to Apple's strengths in design and integration.
  • AI is a complement to Apple's business, not disruptive, as it makes high-performance hardware more relevant and could drive meaningful iPhone upgrade cycles.
  • The smartphone is the ideal device for most computing tasks and the platform on which the future happens, solidifying the relevance of Apple's App Store ecosystem.
  • Apple's partnership with OpenAI for chatbot functionality allows it to offer best-in-class capabilities without massive investments, while reducing the threat of OpenAI building a competing device.
  • Building out the infrastructure for API-level AI features is a challenge for Apple, but one that is solvable given its control over the interface and integration of on-device and cloud processing.
  • The only significant threat to Apple is Google, which could potentially develop differentiated AI capabilities for Android that drive switching from iPhone users, though this is uncertain.
  • Microsoft's missteps with its Recall feature demonstrate the risks of pushing AI features too aggressively, validating Apple's more cautious approach.
  • Apple's user-centric orientation and brand promise of privacy and security align well with the need to deliver AI features in an integrated, trustworthy manner.
·stratechery.com·
Apple Intelligence is Right On Time
Gemini 1.5 and Google’s Nature
Gemini 1.5 and Google’s Nature
Google is facing many of the same challenges after its decades long dominance of the open web: all of the products shown yesterday rely on a different business model than advertising, and to properly execute and deliver on them will require a cultural shift to supporting customers instead of tolerating them. What hasn’t changed — because it is the company’s nature, and thus cannot — is the reliance on scale and an overwhelming infrastructure advantage. That, more than anything, is what defines Google, and it was encouraging to see that so explicitly put forward as an advantage.
·stratechery.com·
Gemini 1.5 and Google’s Nature
AI Integration and Modularization
AI Integration and Modularization
Summary: The question of integration versus modularization in the context of AI, drawing on the work of economists Ronald Coase and Clayton Christensen. Google is pursuing a fully integrated approach similar to Apple, while AWS is betting on modularization, and Microsoft and Meta are somewhere in between. Integration may provide an advantage in the consumer market and for achieving AGI, but that for enterprise AI, a more modular approach leveraging data gravity and treating models as commodities may prevail. Ultimately, the biggest beneficiary of this dynamic could be Nvidia.
The left side of figure 5-1 indicates that when there is a performance gap — when product functionality and reliability are not yet good enough to address the needs of customers in a given tier of the market — companies must compete by making the best possible products. In the race to do this, firms that build their products around proprietary, interdependent architectures enjoy an important competitive advantage against competitors whose product architectures are modular, because the standardization inherent in modularity takes too many degrees of design freedom away from engineers, and they cannot not optimize performance.
The issue I have with this analysis of vertical integration — and this is exactly what I was taught at business school — is that the only considered costs are financial. But there are other, more difficult to quantify costs. Modularization incurs costs in the design and experience of using products that cannot be overcome, yet cannot be measured. Business buyers — and the analysts who study them — simply ignore them, but consumers don’t. Some consumers inherently know and value quality, look-and-feel, and attention to detail, and are willing to pay a premium that far exceeds the financial costs of being vertically integrated.
Google trains and runs its Gemini family of models on its own TPU processors, which are only available on Google’s cloud infrastructure. Developers can access Gemini through Vertex AI, Google’s fully-managed AI development platform; and, to the extent Vertex AI is similar to Google’s internal development environment, that is the platform on which Google is building its own consumer-facing AI apps. It’s all Google, from top-to-bottom, and there is evidence that this integration is paying off: Gemini 1.5’s industry leading 2 million token context window almost certainly required joint innovation between Google’s infrastructure team and its model-building team.
In AI, Google is pursuing an integrated strategy, building everything from chips to models to applications, similar to Apple's approach in smartphones.
On the other extreme is AWS, which doesn’t have any of its own models; instead its focus has been on its Bedrock managed development platform, which lets you use any model. Amazon’s other focus has been on developing its own chips, although the vast majority of its AI business runs on Nvidia GPUs.
Microsoft is in the middle, thanks to its close ties to OpenAI and its models. The company added Azure Models-as-a-Service last year, but its primary focus for both external customers and its own internal apps has been building on top of OpenAI’s GPT family of models; Microsoft has also launched its own chip for inference, but the vast majority of its workloads run on Nvidia.
Google is certainly building products for the consumer market, but those products are not devices; they are Internet services. And, as you might have noticed, the historical discussion didn’t really mention the Internet. Both Google and Meta, the two biggest winners of the Internet epoch, built their services on commodity hardware. Granted, those services scaled thanks to the deep infrastructure work undertaken by both companies, but even there Google’s more customized approach has been at least rivaled by Meta’s more open approach. What is notable is that both companies are integrating their models and their apps, as is OpenAI with ChatGPT.
Google's integrated AI strategy is unique but may not provide a sustainable advantage for Internet services in the way Apple's integration does for devices
It may be the case that selling hardware, which has to be perfect every year to justify a significant outlay of money by consumers, provides a much better incentive structure for maintaining excellence and execution than does being an Aggregator that users access for free.
Google’s collection of moonshots — from Waymo to Google Fiber to Nest to Project Wing to Verily to Project Loon (and the list goes on) — have mostly been science projects that have, for the most part, served to divert profits from Google Search away from shareholders. Waymo is probably the most interesting, but even if it succeeds, it is ultimately a car service rather far afield from Google’s mission statement “to organize the world’s information and make it universally accessible and useful.”
The only thing that drives meaningful shifts in platform marketshare are paradigm shifts, and while I doubt the v1 version of Pixie [Google’s rumored Pixel-only AI assistant] would be good enough to drive switching from iPhone users, there is at least a path to where it does exactly that.
the fact that Google is being mocked mercilessly for messed-up AI answers gets at why consumer-facing AI may be disruptive for the company: the reason why incumbents find it hard to respond to disruptive technologies is because they are, at least at the beginning, not good enough for the incumbent’s core offering. Time will tell if this gives more fuel to a shift in smartphone strategies, or makes the company more reticent.
while I was very impressed with Google’s enterprise pitch, which benefits from its integration with Google’s infrastructure without all of the overhead of potentially disrupting the company’s existing products, it’s going to be a heavy lift to overcome data gravity, i.e. the fact that many enterprise customers will simply find it easier to use AI services on the same clouds where they already store their data (Google does, of course, also support non-Gemini models and Nvidia GPUs for enterprise customers). To the extent Google wins in enterprise it may be by capturing the next generation of startups that are AI first and, by definition, data light; a new company has the freedom to base its decision on infrastructure and integration.
Amazon is certainly hoping that argument is correct: the company is operating as if everything in the AI value chain is modular and ultimately a commodity, which insinuates that it believes that data gravity will matter most. What is difficult to separate is to what extent this is the correct interpretation of the strategic landscape versus a convenient interpretation of the facts that happens to perfectly align with Amazon’s strengths and weaknesses, including infrastructure that is heavily optimized for commodity workloads.
Unclear if Amazon's strategy is based on true insight or motivated reasoning based on their existing strengths
Meta’s open source approach to Llama: the company is focused on products, which do benefit from integration, but there are also benefits that come from widespread usage, particularly in terms of optimization and complementary software. Open source accrues those benefits without imposing any incentives that detract from Meta’s product efforts (and don’t forget that Meta is receiving some portion of revenue from hyperscalers serving Llama models).
The iPhone maker, like Amazon, appears to be betting that AI will be a feature or an app; like Amazon, it’s not clear to what extent this is strategic foresight versus motivated reasoning.
achieving something approaching AGI, whatever that means, will require maximizing every efficiency and optimization, which rewards the integrated approach.
the most value will be derived from building platforms that treat models like processors, delivering performance improvements to developers who never need to know what is going on under the hood.
·stratechery.com·
AI Integration and Modularization
AI startups require new strategies
AI startups require new strategies

comment from Habitue on Hacker News: > These are some good points, but it doesn't seem to mention a big way in which startups disrupt incumbents, which is that they frame the problem a different way, and they don't need to protect existing revenue streams.

The “hard tech” in AI are the LLMs available for rent from OpenAI, Anthropic, Cohere, and others, or available as open source with Llama, Bloom, Mistral and others. The hard-tech is a level playing field; startups do not have an advantage over incumbents.
There can be differentiation in prompt engineering, problem break-down, use of vector databases, and more. However, this isn’t something where startups have an edge, such as being willing to take more risks or be more creative. At best, it is neutral; certainly not an advantage.
This doesn’t mean it’s impossible for a startup to succeed; surely many will. It means that you need a strategy that creates differentiation and distribution, even more quickly and dramatically than is normally required
Whether you’re training existing models, developing models from scratch, or simply testing theories, high-quality data is crucial. Incumbents have the data because they have the customers. They can immediately leverage customers’ data to train models and tune algorithms, so long as they maintain secrecy and privacy.
Intercom’s AI strategy is built on the foundation of hundreds of millions of customer interactions. This gives them an advantage over a newcomer developing a chatbot from scratch. Similarly, Google has an advantage in AI video because they own the entire YouTube library. GitHub has an advantage with Copilot because they trained their AI on their vast code repository (including changes, with human-written explanations of the changes).
While there will always be individuals preferring the startup environment, the allure of working on AI at an incumbent is equally strong for many, especially pure computer and data scientsts who, more than anything else, want to work on interesting AI projects. They get to work in the code, with a large budget, with all the data, with above-market compensation, and a built-in large customer base that will enjoy the fruits of their labor, all without having to do sales, marketing, tech support, accounting, raising money, or anything else that isn’t the pure joy of writing interesting code. This is heaven for many.
A chatbot is in the chatbot market, and an SEO tool is in the SEO market. Adding AI to those tools is obviously a good idea; indeed companies who fail to add AI will likely become irrelevant in the long run. Thus we see that “AI” is a new tool for developing within existing markets, not itself a new market (except for actual hard-tech AI companies).
AI is in the solution-space, not the problem-space, as we say in product management. The customer problem you’re solving is still the same as ever. The problem a chatbot is solving is the same as ever: Talk to customers 24/7 in any language. AI enables completely new solutions that none of us were imagining a few years ago; that’s what’s so exciting and truly transformative. However, the customer problems remain the same, even though the solutions are different
Companies will pay more for chatbots where the AI is excellent, more support contacts are deferred from reaching a human, more languages are supported, and more kinds of questions can be answered, so existing chatbot customers might pay more, which grows the market. Furthermore, some companies who previously (rightly) saw chatbots as a terrible customer experience, will change their mind with sufficiently good AI, and will enter the chatbot market, which again grows that market.
the right way to analyze this is not to say “the AI market is big and growing” but rather: “Here is how AI will transform this existing market.” And then: “Here’s how we fit into that growth.”
·longform.asmartbear.com·
AI startups require new strategies
Generative AI’s Act Two
Generative AI’s Act Two
This page also has many infographics providing an overview of different aspects of the AI industry at time of writing.
We still believe that there will be a separation between the “application layer” companies and foundation model providers, with model companies specializing in scale and research and application layer companies specializing in product and UI. In reality, that separation hasn’t cleanly happened yet. In fact, the most successful user-facing applications out of the gate have been vertically integrated.
We predicted that the best generative AI companies could generate a sustainable competitive advantage through a data flywheel: more usage → more data → better model → more usage. While this is still somewhat true, especially in domains with very specialized and hard-to-get data, the “data moats” are on shaky ground: the data that application companies generate does not create an insurmountable moat, and the next generations of foundation models may very well obliterate any data moats that startups generate. Rather, workflows and user networks seem to be creating more durable sources of competitive advantage.
Some of the best consumer companies have 60-65% DAU/MAU; WhatsApp’s is 85%. By contrast, generative AI apps have a median of 14% (with the notable exception of Character and the “AI companionship” category). This means that users are not finding enough value in Generative AI products to use them every day yet.
generative AI’s biggest problem is not finding use cases or demand or distribution, it is proving value. As our colleague David Cahn writes, “the $200B question is: What are you going to use all this infrastructure to do? How is it going to change people’s lives?”
·sequoiacap.com·
Generative AI’s Act Two