Found 5 bookmarks
Newest
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege

An experienced college essay reviewer identifies seven distinct patterns that reveal ChatGPT's writing "fingerprint" in admission essays, demonstrating how AI-generated content, despite being well-written, often lacks originality and follows predictable patterns that make it detectable to experienced readers.

Seven key indicators of ChatGPT-written essays:

  1. Specific vocabulary choices (e.g., "delve," "tapestry")
  2. Limited types of extended metaphors (weaving, cooking, painting, dance, classical music)
  3. Distinctive punctuation patterns (em dashes, mixed apostrophe styles)
  4. Frequent use of tricolons (three-part phrases), especially ascending ones
  5. Common phrase pattern: "I learned that the true meaning of X is not only Y, it's also Z"
  6. Predictable future-looking conclusions: "As I progress... I will carry..."
  7. Multiple ending syndrome (similar to Lord of the Rings movies)
·reddit.com·
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege
Looking for AI use-cases — Benedict Evans
Looking for AI use-cases — Benedict Evans
  • LLMs have impressive capabilities, but many people struggle to find immediate use-cases that match their own needs and workflows.
  • Realizing the potential of LLMs requires not just technical advancements, but also identifying specific problems that can be automated and building dedicated applications around them.
  • The adoption of new technologies often follows a pattern of initially trying to fit them into existing workflows, before eventually changing workflows to better leverage the new tools.
if you had showed VisiCalc to a lawyer or a graphic designer, their response might well have been ‘that’s amazing, and maybe my book-keeper should see this, but I don’t do that’. Lawyers needed a word processor, and graphic designers needed (say) Postscript, Pagemaker and Photoshop, and that took longer.
I’ve been thinking about this problem a lot in the last 18 months, as I’ve experimented with ChatGPT, Gemini, Claude and all the other chatbots that have sprouted up: ‘this is amazing, but I don’t have that use-case’.
A spreadsheet can’t do word processing or graphic design, and a PC can do all of those but someone needs to write those applications for you first, one use-case at a time.
no matter how good the tech is, you have to think of the use-case. You have to see it. You have to notice something you spend a lot of time doing and realise that it could be automated with a tool like this.
Some of this is about imagination, and familiarity. It reminds me a little of the early days of Google, when we were so used to hand-crafting our solutions to problems that it took time to realise that you could ‘just Google that’.
This is also, perhaps, matching a classic pattern for the adoption of new technology: you start by making it fit the things you already do, where it’s easy and obvious to see that this is a use-case, if you have one, and then later, over time, you change the way you work to fit the new tool.
The concept of product-market fit is that normally you have to iterate your idea of the product and your idea of the use-case and customer towards each other - and then you need sales.
Meanwhile, spreadsheets were both a use-case for a PC and a general-purpose substrate in their own right, just as email or SQL might be, and yet all of those have been unbundled. The typical big company today uses hundreds of different SaaS apps, all them, so to speak, unbundling something out of Excel, Oracle or Outlook. All of them, at their core, are an idea for a problem and an idea for a workflow to solve that problem, that is easier to grasp and deploy than saying ‘you could do that in Excel!’ Rather, you instantiate the problem and the solution in software - ‘wrap it’, indeed - and sell that to a CIO. You sell them a problem.
there’s a ‘Cambrian Explosion’ of startups using OpenAI or Anthropic APIs to build single-purpose dedicated apps that aim at one problem and wrap it in hand-built UI, tooling and enterprise sales, much as a previous generation did with SQL.
Back in 1982, my father had one (1) electric drill, but since then tool companies have turned that into a whole constellation of battery-powered electric hole-makers. One upon a time every startup had SQL inside, but that wasn’t the product, and now every startup will have LLMs inside.
people are still creating companies based on realising that X or Y is a problem, realising that it can be turned into pattern recognition, and then going out and selling that problem.
A GUI tells the users what they can do, but it also tells the computer everything we already know about the problem, and with a general-purpose, open-ended prompt, the user has to think of all of that themselves, every single time, or hope it’s already in the training data. So, can the GUI itself be generative? Or do we need another whole generation of Dan Bricklins to see the problem, and then turn it into apps, thousands of them, one at a time, each of them with some LLM somewhere under the hood?
The change would be that these new use-cases would be things that are still automated one-at-a-time, but that could not have been automated before, or that would have needed far more software (and capital) to automate. That would make LLMs the new SQL, not the new HAL9000.
·ben-evans.com·
Looking for AI use-cases — Benedict Evans
Think of language models like ChatGPT as a “calculator for words”
Think of language models like ChatGPT as a “calculator for words”
This is reflected in their name: a “language model” implies that they are tools for working with language. That’s what they’ve been trained to do, and it’s language manipulation where they truly excel. Want them to work with specific facts? Paste those into the language model as part of your original prompt! There are so many applications of language models that fit into this calculator for words category: Summarization. Give them an essay and ask for a summary. Question answering: given these paragraphs of text, answer this specific question about the information they represent. Fact extraction: ask for bullet points showing the facts presented by an article. Rewrites: reword things to be more “punchy” or “professional” or “sassy” or “sardonic”—part of the fun here is using increasingly varied adjectives and seeing what happens. They’re very good with language after all! Suggesting titles—actually a form of summarization. World’s most effective thesaurus. “I need a word that hints at X”, “I’m very Y about this situation, what could I use for Y?”—that kind of thing. Fun, creative, wild stuff. Rewrite this in the voice of a 17th century pirate. What would a sentient cheesecake think of this? How would Alexander Hamilton rebut this argument? Turn this into a rap battle. Illustrate this business advice with an anecdote about sea otters running a kayak rental shop. Write the script for kickstarter fundraising video about this idea.
A flaw in this analogy: calculators are repeatable Andy Baio pointed out a flaw in this particular analogy: calculators always give you the same answer for a given input. Language models don’t—if you run the same prompt through a LLM several times you’ll get a slightly different reply every time.
·simonwillison.net·
Think of language models like ChatGPT as a “calculator for words”
ChatGPT Is a Blurry JPEG of the Web
ChatGPT Is a Blurry JPEG of the Web
This analogy to lossy compression is not just a way to understand ChatGPT’s facility at repackaging information found on the Web by using different words. It’s also a way to understand the “hallucinations,” or nonsensical answers to factual questions, to which large language models such as ChatGPT are all too prone
When an image program is displaying a photo and has to reconstruct a pixel that was lost during the compression process, it looks at the nearby pixels and calculates the average. This is what ChatGPT does when it’s prompted to describe, say, losing a sock in the dryer using the style of the Declaration of Independence: it is taking two points in “lexical space” and generating the text that would occupy the location between them
they’ve discovered a “blur” tool for paragraphs instead of photos, and are having a blast playing with it.
A close examination of GPT-3’s incorrect answers suggests that it doesn’t carry the “1” when performing arithmetic. The Web certainly contains explanations of carrying the “1,” but GPT-3 isn’t able to incorporate those explanations. GPT-3’s statistical analysis of examples of arithmetic enables it to produce a superficial approximation of the real thing, but no more than that.
In human students, rote memorization isn’t an indicator of genuine learning, so ChatGPT’s inability to produce exact quotes from Web pages is precisely what makes us think that it has learned something. When we’re dealing with sequences of words, lossy compression looks smarter than lossless compression
Generally speaking, though, I’d say that anything that’s good for content mills is not good for people searching for information. The rise of this type of repackaging is what makes it harder for us to find what we’re looking for online right now; the more that text generated by large language models gets published on the Web, the more the Web becomes a blurrier version of itself.
Can large language models help humans with the creation of original writing? To answer that, we need to be specific about what we mean by that question. There is a genre of art known as Xerox art, or photocopy art, in which artists use the distinctive properties of photocopiers as creative tools. Something along those lines is surely possible with the photocopier that is ChatGPT, so, in that sense, the answer is yes
If students never have to write essays that we have all read before, they will never gain the skills needed to write something that we have never read.
Sometimes it’s only in the process of writing that you discover your original ideas.
Some might say that the output of large language models doesn’t look all that different from a human writer’s first draft, but, again, I think this is a superficial resemblance. Your first draft isn’t an unoriginal idea expressed clearly; it’s an original idea expressed poorly, and it is accompanied by your amorphous dissatisfaction, your awareness of the distance between what it says and what you want it to say. That’s what directs you during rewriting, and that’s one of the things lacking when you start with text generated by an A.I.
·newyorker.com·
ChatGPT Is a Blurry JPEG of the Web
AI-generated code helps me learn and makes experimenting faster
AI-generated code helps me learn and makes experimenting faster
here are five large language model applications that I find intriguing: Intelligent automation starting with browsers but this feels like a step towards phenotropics Text generation when this unlocks new UIs like Word turning into Photoshop or something Human-machine interfaces because you can parse intent instead of nouns When meaning can be interfaced with programmatically and at ludicrous scale Anything that exploits the inhuman breadth of knowledge embedded in the model, because new knowledge is often the collision of previously separated old knowledge, and this has not been possible before.
·interconnected.org·
AI-generated code helps me learn and makes experimenting faster