Why A.I. Isn’t Going to Make Art
Traces of Things, 2018 — Anna Ridler
Traces of Things (2018) is a video installation and series of thirty digital prints that explore what happens when history is remembered and re-remembered. Past moments in time are re-lived through the eyes of an artificial intelligence model, trained on images Ridler sourced from public and private Maltese archives, to create its own depiction of what it thinks should be included in an archive of Maltese photography. The process of how an AI recreates realities through a process of deliberating and deeming what is important echoes the selective and subjective human process of repeatedly recreating memories each time they are recalled.
Every time we remember something we are also actively recreating it. Traces of Things, a video installation and a series of thirty digital prints, explores this loop - remembering and revision - by passing through moments of history through an artificial intelligence model trained on material from a variety of public and private Maltese archives. At what point do the images change from one thing to another? At what point do they break down into nothingness?
I took photographs that showed historic Malta from a variety of sources, some primary, some second hand, some public, some private, to create my own dataset of what the island has looked like. There are similar issues with using archives to the issues that exist with datasets: what we have deemed important enough to count and quantify means that what is recorded is never simply “what happened” and can only show sometimes a very narrow or very incomplete view
Traces of Things shows how quickly meaning can break down if only a narrow dataset exists. Human memory works by filling in the blanks, creating essentially confabulations, a type of memory error where a person creates fabricated, misinterpreted, or distorted information, often found with dementia patients. In this piece memories are mixed with inventions; inventions are modelled on memories. There is a term used often in computer science and machine learning called “overfitting” which is used when a model cannot create new imagery but constantly remembers just one thing, the link to dementia again coming through.
current technology still has the elements of transformation each time something is recalled, or played, or copied, that become encoded into it. These moments are compelling: the creation of a copy where things start to slowly transform. In Traces of Things, boats turn into houses, houses into mountains, mountains into harbours. This power to metamorphose without real control is something that within an art context is more closely associated with work that deals with biology or nature, than the digital, which tends to be all smooth and clean. The style that comes out is ruined, decaying and decomposed - something antithetical to a certain digital art. But at the same time, to my mind, beautiful. The link, then, to the biological processes - the neuroscience - that have inspired much of the research into artificial intelligence as memories and matter are constantly recalled and revised.
The Data Poets
AI Art is The New Stock Image
Some images look like they were made under a robotic sugar high. Lots of warm colors, but they make everything look like candy… they’re so overly sweet that they give you visual diabetes..
Average AI images drag down everything around them. An AI hero image is a comedian opening the show with a knock-knock joke. Good images enrich your article, bad images steal its soul.
Synthography – An Invitation to Reconsider the Rapidly Changing Toolkit of Digital Image Creation as a New Genre Beyond Photography
With the comprehensive application of Artificial Intelligence into the creation and post production of images, it seems questionable if the resulting visualisations can still be considered ‘photographs’ in a classical sense – drawing with light. Automation has been part of the popular strain of photography since its inception, but even the amateurs with only basic knowledge of the craft could understand themselves as author of their images. We state a legitimation crisis for the current usage of the term. This paper is an invitation to consider Synthography as a term for a new genre for image production based on AI, observing the current occurrence and implementation in consumer cameras and post-production.
What Is AI Doing To Art? | NOEMA
The proliferation of AI-generated images in online environments won’t eradicate human art wholesale, but it does represent a reshuffling of the market incentives that help creative economies flourish. Like the college essay, another genre of human creativity threatened by AI usurpation, creative “products” might become more about process than about art as a commodity.
Are artists using computer software on iPads to make seemingly hand-painted images engaged in a less creative process than those who produce the image by hand? We can certainly judge one as more meritorious than the other but claiming that one is more original is harder to defend.
An understanding of the technology as one that separates human from machine into distinct categories leaves little room for the messier ways we often fit together with our tools. AI-generated images will have a big impact on copyright law, but the cultural backlash against the “computers making art” overlooks the ways computation has already been incorporated into the arts.
The problem with debates around AI-generated images that demonize the tool is that the displacement of human-made art doesn’t have to be an inevitability. Markets can be adjusted to mitigate unemployment in changing economic landscapes. As legal scholar Ewan McGaughey points out, 42% of English workers were redundant after WWII — and yet the U.K. managed to maintain full employment.
Contemporary critics claim that prompt engineering and synthography aren’t emergent professions but euphemisms necessary to equate AI-generated artwork with the work of human artists. As with the development of photography as a medium, today’s debates about AI often overlook how conceptions of human creativity are themselves shaped by commercialization and labor.
Others looking to elevate AI art’s status alongside other forms of digital art are opting for an even loftier rebrand: “synthography.” This categorization suggests a process more complex than the mechanical operation of a picture-making tool, invoking the active synthesis of disparate aesthetic elements. Like Fox Talbot and his contemporaries in the nineteenth century, “synthographers” maintain that AI art simply automates the most time-consuming parts of drawing and painting, freeing up human cognition for higher-order creativity.
Separating human from camera was a necessary part of preserving the myth of the camera as an impartial form of vision. To incorporate photography into an economic landscape of creativity, however, human agency needed to ascribe to all parts of the process.
Consciously or not, proponents of AI-generated images stamp the tool with rhetoric that mirrors the democratic aspirations of the twenty-first century.
Stability AI took a similar tack, billing itself as “AI by the people, for the people,” despite turning Stable Diffusion, their text-to-image model, into a profitable asset. That the program is easy to use is another selling point. Would-be digital artists no longer need to use expensive specialized software to produce visually interesting material.
Meanwhile, communities of digital artists and their supporters claim that the reason AI-generated images are compelling at all is because they were trained with data sets that contained copyrighted material. They reject the claim that AI-generated art produces anything original and suggest it instead be thought of as a form of “twenty-first century collage.”
Erasing human influence from the photographic process was good for underscoring arguments about objectivity, but it complicated commercial viability. Ownership would need to be determined if photographs were to circulate as a new form of property. Was the true author of a photograph the camera or its human operator?
By reframing photographs as les dessins photographiques — or photographic drawings, the plaintiffs successfully established that the development of photographs in a darkroom was part of an operator’s creative process. In addition to setting up a shot, the photographer needed to coax the image from the camera’s film in a process resembling the creative output of drawing. The camera was a pencil capable of drawing with light and photosensitive surfaces, but held and directed by a human author.
Establishing photography’s dual function as both artwork and document may not have been philosophically straightforward, but it staved off a surge of harder questions.
Human intervention in the photographic process still appeared to happen only on the ends — in setup and then development — instead of continuously throughout the image-making process.
AI and Image Generation (Everything is a Remix Part 4)
Creativity As an App | Andreessen Horowitz
We fully acknowledge that it’s hard to be confident in any predictions at the pace the field is moving. Right now, though, it seems we’re much more likely to see applications full of creative images created strictly by programmers than applications with human-designed art built strictly by creators.
Stable Diffusion is a really big deal