ivanreese/visual-programming-codex: Waypoints to the past and future of visual programming.
Vision Pro is an over-engineered “devkit” // Hardware bleeds genius & audacity but software story is disheartening // What we got wrong at Oculus that Apple got right // Why Meta could finally have its Android moment
Some of the topics I touch on:
Why I believe Vision Pro may be an over-engineered “devkit”
The genius & audacity behind some of Apple’s hardware decisions
Gaze & pinch is an incredible UI superpower and major industry ah-ha moment
Why the Vision Pro software/content story is so dull and unimaginative
Why most people won’t use Vision Pro for watching TV/movies
Apple’s bet in immersive video is a total game-changer for live sports
Why I returned my Vision Pro… and my Top 10 wishlist to reconsider
Apple’s VR debut is the best thing that ever happened to Oculus/Meta
My unsolicited product advice to Meta for Quest Pro 2 and beyond
Apple really played it safe in the design of this first VR product by over-engineering it. For starters, Vision Pro ships with more sensors than what’s likely necessary to deliver Apple’s intended experience. This is typical in a first-generation product that’s been under development for so many years. It makes Vision Pro start to feel like a devkit.
A sensor party: 6 tracking cameras, 2 passthrough cameras, 2 depth sensors(plus 4 eye-tracking cameras not shown)
it’s easy to understand two particularly important decisions Apple made for the Vision Pro launch:
Designing an incredible in-store Vision Pro demo experience, with the primary goal of getting as many people as possible to experience the magic of VR through Apple’s lenses — most of whom have no intention to even consider a $4,000 purchase. The demo is only secondarily focused on actually selling Vision Pro headsets.
Launching an iconic woven strap that photographs beautifully even though this strap simply isn’t comfortable enough for the vast majority of head shapes. It’s easy to conclude that this decision paid off because nearly every bit of media coverage (including and especially third-party reviews on YouTube) uses the woven strap despite the fact that it’s less comfortable than the dual loop strap that’s “hidden in the box”.
Apple’s relentless and uncompromising hardware insanity is largely what made it possible for such a high-res display to exist in a VR headset, and it’s clear that this product couldn’t possibly have launched much sooner than 2024 for one simple limiting factor — the maturity of micro-OLED displays plus the existence of power-efficient chipsets that can deliver the heavy compute required to drive this kind of display (i.e. the M2).
Natural Language Is an Unnatural Interface
On the user experience of interacting with LLMs
Prompt engineers not only need to get the model to respond to a given question but also structure the output in a parsable way (such as JSON), in case it needs to be rendered in some UI components or be chained into the input of a future LLM query. They scaffold the raw input that is fed into an LLM so the end user doesn’t need to spend time thinking about prompting at all.
From the user’s side, it’s hard to decide what to ask while providing the right amount of context.From the developer’s side, two problems arise. It’s hard to monitor natural language queries and understand how users are interacting with your product. It’s also hard to guarantee that an LLM can successfully complete an arbitrary query. This is especially true for agentic workflows, which are incredibly brittle in practice.
When we speak to other people, there is a shared context that we communicate under. We’re not just exchanging words, but a larger information stream that also includes intonation while speaking, hand gestures, memories of each other, and more. LLMs unfortunately cannot understand most of this context and therefore, can only do as much as is described by the prompt
most people use LLMs for ~4 basic natural language tasks, rarely taking advantage of the conversational back-and-forth built into chat systems:Summarization: Summarizing a large amount of information or text into a concise yet comprehensive summary. This is useful for quickly digesting information from long articles, documents or conversations. An AI system needs to understand the key ideas, concepts and themes to produce a good summary.ELI5 (Explain Like I'm 5): Explaining a complex concept in a simple, easy-to-understand manner without any jargon. The goal is to make an explanation clear and simple enough for a broad, non-expert audience.Perspectives: Providing multiple perspectives or opinions on a topic. This could include personal perspectives from various stakeholders, experts with different viewpoints, or just a range of ways a topic can be interpreted based on different experiences and backgrounds. In other words, “what would ___ do?”Contextual Responses: Responding to a user or situation in an appropriate, contextualized manner (via email, message, etc.). Contextual responses should feel organic and on-topic, as if provided by another person participating in the same conversation.
Prompting nearly always gets in the way because it requires the user to think. End users ultimately do not wish to confront an empty text box in accomplishing their goals. Buttons and other interactive design elements make life easier.The interface makes all the difference in crafting an AI system that augments and amplifies human capabilities rather than adding additional cognitive load.Similar to standup comedy, delightful LLM-powered experiences require a subversion of expectation.
Users will expect the usual drudge of drafting an email or searching for a nearby restaurant, but instead will be surprised by the amount of work that has already been done for them from the moment that their intent is made clear. For example, it would a great experience to discover pre-written email drafts or carefully crafted restaurant and meal recommendations that match your personal taste.If you still need to use a text input box, at a minimum, also provide some buttons to auto-fill the prompt box. The buttons can pass LLM-generated questions to the prompt box.
Reinventing the carousel - Material Design
Folk Interfaces
You can look at an interface and see it as a clearly signposted user journey you should follow. Or you can see it as a collection of functions and affordances to repurpose. As raw material, rather than a guided path.
Index - Grant Custer
The Missing Guide for Mac Catalyst Apps