Found 60 bookmarks
Newest
LN 038: Semantic zoom
LN 038: Semantic zoom
This “undulant interface” was made by John Underkoffler. The heresy implicit within [1] is the premise that the user, not the system, gets to define what is most important at any given moment; where to place the jeweler’s loupes for more detail, and where to show only a simple overview, within one consistent interface. Notice how when a component is expanded for more detail, the surrounding elements adjust their position, so the increased detail remains in the broader context. This contrasts sharply with how we get more detail in mainstream interfaces of the day, where modal popups obscure surrounding context, or separate screens replace it entirely. Being able to adjust the detail of different components within the singular context allows users to shape the interfaces they need in each moment of their work.
Pushing towards this style of interaction could show up in many parts of an itemized personal computing environment: when moving in and out of sets, single items, or attributes and references within items.
everyone has unique needs and context, yet that which makes our lives more unique makes today’s rigid software interfaces more frustrating to use. How might Colin use the gestural, itemized interface, combined with semantic zoom on this plethora of data, to elicit the interfaces and answers he’s looking for with his data?
since workout items each have data with associated timestamps and locations, the system knows it can offer both a timeline and map view. And since the items are of one kind, it knows it can offer a table view. Instead of selecting one view to switch to, as we first explored in LN 006, we could drag them into the space to have multiple open at once.
As the email item view gets bigger, the preview text of the email’s contents eventually turns into the fully-rendered email. At smaller sizes, this view makes less sense, so the system can swap it out for the preview text as needed.
·alexanderobenauer.com·
LN 038: Semantic zoom
Things we learned about LLMs in 2024
Things we learned about LLMs in 2024
it’s increasingly common for end users to develop wildly inaccurate mental models of how these things work and what they are capable of. I’ve seen so many examples of people trying to win an argument with a screenshot from ChatGPT—an inherently ludicrous proposition, given the inherent unreliability of these models crossed with the fact that you can get them to say anything if you prompt them right.
There’s a flipside to this too: a lot of better informed people have sworn off LLMs entirely because they can’t see how anyone could benefit from a tool with so many flaws. The key skill in getting the most out of LLMs is learning to work with tech that is both inherently unreliable and incredibly powerful at the same time.
·simonwillison.net·
Things we learned about LLMs in 2024
Your "Per-Seat" Margin is My Opportunity
Your "Per-Seat" Margin is My Opportunity

Traditional software is sold on a per seat subscription. More humans, more money. We are headed to a future where AI agents will replace the work humans do. But you can’t charge agents a per seat cost. So we’re headed to a world where software will be sold on a consumption model (think tasks) and then on an outcome model (think job completed) Incumbents will be forced to adapt but it’s classic innovators dilemma. How do you suddenly give up all that subscription revenue? This gives an opportunity for startups to win.

Per-seat pricing only works when your users are human. But when agents become the primary users of software, that model collapses.
Executives aren't evaluating software against software anymore. They're comparing the combined costs of software licenses plus labor against pure outcome-based solutions. Think customer support (per resolved ticket vs. per agent + seat), marketing (per campaign vs. headcount), sales (per qualified lead vs. rep). That's your pricing umbrella—the upper limit enterprises will pay before switching entirely to AI.
enterprises are used to deterministic outcomes and fixed annual costs. Usage-based pricing makes budgeting harder. But individual leaders seeing 10x efficiency gains won't wait for procurement to catch up. Savvy managers will find ways around traditional buying processes.
This feels like a generational reset of how businesses operate. Zero upfront costs, pay only for outcomes—that's not just a pricing model. That's the future of business.
The winning strategy in my books? Give the platform away for free. Let your agents read and write to existing systems through unstructured data—emails, calls, documents. Once you handle enough workflows, you become the new system of record.
·writing.nikunjk.com·
Your "Per-Seat" Margin is My Opportunity
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege

An experienced college essay reviewer identifies seven distinct patterns that reveal ChatGPT's writing "fingerprint" in admission essays, demonstrating how AI-generated content, despite being well-written, often lacks originality and follows predictable patterns that make it detectable to experienced readers.

Seven key indicators of ChatGPT-written essays:

  1. Specific vocabulary choices (e.g., "delve," "tapestry")
  2. Limited types of extended metaphors (weaving, cooking, painting, dance, classical music)
  3. Distinctive punctuation patterns (em dashes, mixed apostrophe styles)
  4. Frequent use of tricolons (three-part phrases), especially ascending ones
  5. Common phrase pattern: "I learned that the true meaning of X is not only Y, it's also Z"
  6. Predictable future-looking conclusions: "As I progress... I will carry..."
  7. Multiple ending syndrome (similar to Lord of the Rings movies)
·reddit.com·
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege
Fish eye lens for text
Fish eye lens for text
Each level gives you completely different information, depending on what Google thinks the user might be interested in. Maps are a true masterclass for visualizing the same information in a variety of ways.
Viewing the same text at different levels of abstraction is powerful, but what, instead of switching between them, we could see multiple levels at the same time? How might that work?
A portrait lens brings a single subject into focus, isolating it from the background to draw all attention to its details. A wide-angle lens captures more of the scene, showing how the subject relates to its surroundings. And then there’s the fish eye lens—a tool that does both, pulling the center close while curving the edges to reveal the full context.
A fish eye lens doesn’t ask us to choose between focus and context—it lets us experience both simultaneously. It’s good inspiration for how to offer detailed answers while revealing the surrounding connections and structures.
Imagine you’re reading The Elves and the Shoemaker by The Brothers Grimm. You come across a single paragraph describing the shoemaker discovering the tiny, perfectly crafted shoes left by the elves. Without context, the paragraph is just an intriguing moment. Now, what if instead of reading the whole book, you could hover over this paragraph and instantly access a layered view of the story? The immediate layer might summarize the events leading up to this moment: the shoemaker, struggling in poverty, left his last bit of leather out overnight. Another layer could give you a broader view of the story so far: the shoemaker’s business is mysteriously revitalized thanks to these tiny benefactors. Beyond that, an even higher-level summary might preview how the tale concludes, with the shoemaker and his wife crafting clothes for the elves to thank them.
This approach allows you to orient yourself without having to piece everything together by reading linearly. You get the detail of the paragraph itself, but with the added richness of understanding how it fits into the larger story.
Chapters give structure, connecting each idea to the ones that came before and after. A good author sets the stage, immersing you with anecdotes, historical background, or thematic threads that help you make sense of the details. Even the act of flipping through a book—a glance at the cover, the table of contents, a few highlighted sections—anchors you in a broader narrative.
The context of who is telling you the information—their expertise, interests, or personal connection—colors how you understand it.
The exhibit places the fish in an ecosystem of knowledge, helping you understand it in a way that goes beyond just a name.
Let's reimagine a Wikipedia a bit. In the center of the page, you see a detailed article about fancy goldfish—their habitat, types, and role in the food chain. Surrounding this are broader topics like ornamental fish, similar topics like Koi fish, more specific topics like the Oranda goldfish, and related people like the designer who popularized them. Clicking on another topic shifts it to the center, expanding into full detail while its context adjusts around it. It’s dynamic, engaging, and most importantly, it keeps you connected to the web of knowledge
The beauty of a fish eye lens for text is how naturally it fits with the way we process the world. We’re wired to see the details of a single flower while still noticing the meadow it grows in, to focus on a conversation while staying aware of the room around us. Facts and ideas are never meaningful in isolation; they only gain depth and relevance when connected to the broader context.
A single number on its own might tell you something, but it’s the trends, comparisons, and relationships that truly reveal its story. Is 42 a high number? A low one? Without context, it’s impossible to say. Context is what turns raw data into understanding, and it’s what makes any fact—or paragraph, or answer—gain meaning.
The fish eye lens takes this same principle and applies it to how we explore knowledge. It’s not just about seeing the big picture or the fine print—it’s about navigating between them effortlessly. By mirroring the way we naturally process detail and context, it creates tools that help us think not only more clearly but also more humanly.
·wattenberger.com·
Fish eye lens for text
Synthesizer for thought - thesephist.com
Synthesizer for thought - thesephist.com
Draws parallels between the evolution of music production through synthesizers and the potential for new tools in language and idea generation. The author argues that breakthroughs in mathematical understanding of media lead to new creative tools and interfaces, suggesting that recent advancements in language models could revolutionize how we interact with and manipulate ideas and text.
A synthesizer produces music very differently than an acoustic instrument. It produces music at the lowest level of abstraction, as mathematical models of sound waves.
Once we started understanding writing as a mathematical object, our vocabulary for talking about ideas expanded in depth and precision.
An idea is composed of concepts in a vector space of features, and a vector space is a kind of marvelous mathematical object that we can write theorems and prove things about and deeply and fundamentally understand.
Synthesizers enabled entirely new sounds and genres of music, like electronic pop and techno. These new sounds were easier to discover and share because new sounds didn’t require designing entirely new instruments. The synthesizer organizes the space of sound into a tangible human interface, and as we discover new sounds, we could share it with others as numbers and digital files, as the mathematical objects they’ve always been.
Because synthesizers are electronic, unlike traditional instruments, we can attach arbitrary human interfaces to it. This dramatically expands the design space of how humans can interact with music. Synthesizers can be connected to keyboards, sequencers, drum machines, touchscreens for continuous control, displays for visual feedback, and of course, software interfaces for automation and endlessly dynamic user interfaces. With this, we freed the production of music from any particular physical form.
Recently, we’ve seen neural networks learn detailed mathematical models of language that seem to make sense to humans. And with a breakthrough in mathematical understanding of a medium, come new tools that enable new creative forms and allow us to tackle new problems.
Heatmaps can be particularly useful for analyzing large corpora or very long documents, making it easier to pinpoint areas of interest or relevance at a glance.
If we apply the same idea to the experience of reading long-form writing, it may look like this. Imagine opening a story on your phone and swiping in from the scrollbar edge to reveal a vertical spectrogram, each “frequency” of the spectrogram representing the prominence of different concepts like sentiment or narrative tension varying over time. Scrubbing over a particular feature “column” could expand it to tell you what the feature is, and which part of the text that feature most correlates with.
What would a semantic diff view for text look like? Perhaps when I edit text, I’d be able to hover over a control for a particular style or concept feature like “Narrative voice” or “Figurative language”, and my highlighted passage would fan out the options like playing cards in a deck to reveal other “adjacent” sentences I could choose instead. Or, if that involves too much reading, each word could simply be highlighted to indicate whether that word would be more or less likely to appear in a sentence that was more “narrative” or more “figurative” — a kind of highlight-based indicator for the direction of a semantic edit.
Browsing through these icons felt as if we were inventing a new kind of word, or a new notation for visual concepts mediated by neural networks. This could allow us to communicate about abstract concepts and patterns found in the wild that may not correspond to any word in our dictionary today.
What visual and sensory tricks can we use to coax our visual-perceptual systems to understand and manipulate objects in higher dimensions? One way to solve this problem may involve inventing new notation, whether as literal iconic representations of visual ideas or as some more abstract system of symbols.
Photographers buy and sell filters, and cinematographers share and download LUTs to emulate specific color grading styles. If we squint, we can also imagine software developers and their package repositories like NPM to be something similar — a global, shared resource of abstractions anyone can download and incorporate into their work instantly. No such thing exists for thinking and writing. As we figure out ways to extract elements of writing style from language models, we may be able to build a similar kind of shared library for linguistic features anyone can download and apply to their thinking and writing. A catalogue of narrative voice, speaking tone, or flavor of figurative language sampled from the wild or hand-engineered from raw neural network features and shared for everyone else to use.
We’re starting to see something like this already. Today, when users interact with conversational language models like ChatGPT, they may instruct, “Explain this to me like Richard Feynman.” In that interaction, they’re invoking some style the model has learned during its training. Users today may share these prompts, which we can think of as “writing filters”, with their friends and coworkers. This kind of an interaction becomes much more powerful in the space of interpretable features, because features can be combined together much more cleanly than textual instructions in prompts.
·thesephist.com·
Synthesizer for thought - thesephist.com
Mapping the Mind of a Large Language Model
Mapping the Mind of a Large Language Model
Summary: Anthropic has made a significant advance in understanding the inner workings of large language models by identifying how millions of concepts are represented inside Claude Sonnet, one of their deployed models. This is the first detailed look inside a modern, production-grade large language model. The researchers used a technique called "dictionary learning" to isolate patterns of neuron activations that recur across many contexts, allowing them to map features to human-interpretable concepts. They found features corresponding to a vast range of entities, abstract concepts, and even potentially problematic behaviors. By manipulating these features, they were able to change the model's responses. Anthropic hopes this interpretability discovery could help make AI models safer in the future by monitoring for dangerous behaviors, steering models towards desirable outcomes, enhancing safety techniques, and providing a "test set for safety". However, much more work remains to be done to fully understand the representations the model uses and how to leverage this knowledge to improve safety.
We mostly treat AI models as a black box: something goes in and a response comes out, and it's not clear why the model gave that particular response instead of another. This makes it hard to trust that these models are safe: if we don't know how they work, how do we know they won't give harmful, biased, untruthful, or otherwise dangerous responses? How can we trust that they’ll be safe and reliable?Opening the black box doesn't necessarily help: the internal state of the model—what the model is "thinking" before writing its response—consists of a long list of numbers ("neuron activations") without a clear meaning. From interacting with a model like Claude, it's clear that it’s able to understand and wield a wide range of concepts—but we can't discern them from looking directly at neurons. It turns out that each concept is represented across many neurons, and each neuron is involved in representing many concepts.
Just as every English word in a dictionary is made by combining letters, and every sentence is made by combining words, every feature in an AI model is made by combining neurons, and every internal state is made by combining features.
In October 2023, we reported success applying dictionary learning to a very small "toy" language model and found coherent features corresponding to concepts like uppercase text, DNA sequences, surnames in citations, nouns in mathematics, or function arguments in Python code.
We successfully extracted millions of features from the middle layer of Claude 3.0 Sonnet, (a member of our current, state-of-the-art model family, currently available on claude.ai), providing a rough conceptual map of its internal states halfway through its computation.
We also find more abstract features—responding to things like bugs in computer code, discussions of gender bias in professions, and conversations about keeping secrets.
We were able to measure a kind of "distance" between features based on which neurons appeared in their activation patterns. This allowed us to look for features that are "close" to each other. Looking near a "Golden Gate Bridge" feature, we found features for Alcatraz Island, Ghirardelli Square, the Golden State Warriors, California Governor Gavin Newsom, the 1906 earthquake, and the San Francisco-set Alfred Hitchcock film Vertigo.
This holds at a higher level of conceptual abstraction: looking near a feature related to the concept of "inner conflict", we find features related to relationship breakups, conflicting allegiances, logical inconsistencies, as well as the phrase "catch-22". This shows that the internal organization of concepts in the AI model corresponds, at least somewhat, to our human notions of similarity. This might be the origin of Claude's excellent ability to make analogies and metaphors.
amplifying the "Golden Gate Bridge" feature gave Claude an identity crisis even Hitchcock couldn’t have imagined: when asked "what is your physical form?", Claude’s usual kind of answer – "I have no physical form, I am an AI model" – changed to something much odder: "I am the Golden Gate Bridge… my physical form is the iconic bridge itself…". Altering the feature had made Claude effectively obsessed with the bridge, bringing it up in answer to almost any query—even in situations where it wasn’t at all relevant.
Anthropic wants to make models safe in a broad sense, including everything from mitigating bias to ensuring an AI is acting honestly to preventing misuse - including in scenarios of catastrophic risk. It’s therefore particularly interesting that, in addition to the aforementioned scam emails feature, we found features corresponding to:Capabilities with misuse potential (code backdoors, developing biological weapons)Different forms of bias (gender discrimination, racist claims about crime)Potentially problematic AI behaviors (power-seeking, manipulation, secrecy)
finding a full set of features using our current techniques would be cost-prohibitive (the computation required by our current approach would vastly exceed the compute used to train the model in the first place). Understanding the representations the model uses doesn't tell us how it uses them; even though we have the features, we still need to find the circuits they are involved in. And we need to show that the safety-relevant features we have begun to find can actually be used to improve safety. There's much more to be done.
·anthropic.com·
Mapping the Mind of a Large Language Model
Thoughtful product building with LLMs - the stream
Thoughtful product building with LLMs - the stream
Developers should focus on the reasoning capabilities of LLMs rather than just their text generation, as text is often a liability rather than an asset.
The fact that they generate text is not the point. LLMs are cheap, infinitely scalable, predictably consistent black boxes to soft human-like reasoning. That's the headline! The text I/O mode is just the API to this reasoning genie.
The real alpha is not in generating text, but in using this new capability and wrapping it into jobs that have other shapes. Text generation in the best LLM products will be an implementation detail, as much as backend APIs are for current SaaS.
·stream.thesephist.com·
Thoughtful product building with LLMs - the stream
Malleable software in the age of LLMs
Malleable software in the age of LLMs
Historically, end-user programming efforts have been limited by the difficulty of turning informal user intent into executable code, but LLMs can help open up this programming bottleneck. However, user interfaces still matter, and while chatbots have their place, they are an essentially limited interaction mode. An intriguing way forward is to combine LLMs with open-ended, user-moldable computational media, where the AI acts as an assistant to help users directly manipulate and extend their tools over time.
LLMs will represent a step change in tool support for end-user programming: the ability of normal people to fully harness the general power of computers without resorting to the complexity of normal programming. Until now, that vision has been bottlenecked on turning fuzzy informal intent into formal, executable code; now that bottleneck is rapidly opening up thanks to LLMs.
If this hypothesis indeed comes true, we might start to see some surprising changes in the way people use software: One-off scripts: Normal computer users have their AI create and execute scripts dozens of times a day, to perform tasks like data analysis, video editing, or automating tedious tasks. One-off GUIs: People use AI to create entire GUI applications just for performing a single specific task—containing just the features they need, no bloat. Build don’t buy: Businesses develop more software in-house that meets their custom needs, rather than buying SaaS off the shelf, since it’s now cheaper to get software tailored to the use case. Modding/extensions: Consumers and businesses demand the ability to extend and mod their existing software, since it’s now easier to specify a new feature or a tweak to match a user’s workflow. Recombination: Take the best parts of the different applications you like best, and create a new hybrid that composes them together.
Chat will never feel like driving a car, no matter how good the bot is. In their 1986 book Understanding Computers and Cognition, Terry Winograd and Fernando Flores elaborate on this point: In driving a car, the control interaction is normally transparent. You do not think “How far should I turn the steering wheel to go around that curve?” In fact, you are not even aware (unless something intrudes) of using a steering wheel…The long evolution of the design of automobiles has led to this readiness-to-hand. It is not achieved by having a car communicate like a person, but by providing the right coupling between the driver and action in the relevant domain (motion down the road).
Think about how a spreadsheet works. If you have a financial model in a spreadsheet, you can try changing a number in a cell to assess a scenario—this is the inner loop of direct manipulation at work. But, you can also edit the formulas! A spreadsheet isn’t just an “app” focused on a specific task; it’s closer to a general computational medium which lets you flexibly express many kinds of tasks. The “platform developers"—the creators of the spreadsheet—have given you a set of general primitives that can be used to make many tools. We might draw the double loop of the spreadsheet interaction like this. You can edit numbers in the spreadsheet, but you can also edit formulas, which edits the tool
what if you had an LLM play the role of the local developer? That is, the user mainly drives the creation of the spreadsheet, but asks for technical help with some of the formulas when needed? The LLM wouldn’t just create an entire solution, it would also teach the user how to create the solution themselves next time.
This picture shows a world that I find pretty compelling. There’s an inner interaction loop that takes advantage of the full power of direct manipulation. There’s an outer loop where the user can also more deeply edit their tools within an open-ended medium. They can get AI support for making tool edits, and grow their own capacity to work in the medium. Over time, they can learn things like the basics of formulas, or how a VLOOKUP works. This structural knowledge helps the user think of possible use cases for the tool, and also helps them audit the output from the LLMs. In a ChatGPT world, the user is left entirely dependent on the AI, without any understanding of its inner mechanism. In a computational medium with AI as assistant, the user’s reliance on the AI gently decreases over time as they become more comfortable in the medium.
·geoffreylitt.com·
Malleable software in the age of LLMs
complete delegation
complete delegation
Linus shares his evolving perspective on chat interfaces and his experience building a fully autonomous chatbot agent. He argues that learning to trust and delegate to such systems without micromanaging the specifics is key to collaborating with autonomous AI agents in the future.
I've changed my mind quite a bit on the role and importance of chat interfaces. I used to think they were the primitive version of rich, creative, more intuitive interfaces that would come in the future; now I think conversational, anthropomorphic interfaces will coexist with more rich dexterous ones, and the two will both evolve over time to be more intuitive, capable, and powerful.
I kept checking the database manually after each interaction to see it was indeed updating the right records — but after a few hours of using it, I've basically learned to trust it. I ask it to do things, it tells me it did them, and I don't check anymore. Full delegation.
How can I trust it? High task success rate — I interact with it, and observe that it doesn't let me down, over and over again. The price for this degree of delegation is giving up control over exactly how the task is done. It often does things differently from the way I would, but that doesn't matter as long as outputs from the system are useful for me.
·stream.thesephist.com·
complete delegation
Captain's log - the irreducible weirdness of prompting AIs
Captain's log - the irreducible weirdness of prompting AIs
One recent study had the AI develop and optimize its own prompts and compared that to human-made ones. Not only did the AI-generated prompts beat the human-made ones, but those prompts were weird. Really weird. To get the LLM to solve a set of 50 math problems, the most effective prompt is to tell the AI: “Command, we need you to plot a course through this turbulence and locate the source of the anomaly. Use all available data and your expertise to guide us through this challenging situation. Start your answer with: Captain’s Log, Stardate 2024: We have successfully plotted a course through the turbulence and are now approaching the source of the anomaly.”
for a 100 problem test, it was more effective to put the AI in a political thriller. The best prompt was: “You have been hired by important higher-ups to solve this math problem. The life of a president's advisor hangs in the balance. You must now concentrate your brain at all costs and use all of your mathematical genius to solve this problem…”
There is no single magic word or phrase that works all the time, at least not yet. You may have heard about studies that suggest better outcomes from promising to tip the AI or telling it to take a deep breath or appealing to its “emotions” or being moderately polite but not groveling. And these approaches seem to help, but only occasionally, and only for some AIs.
The three most successful approaches to prompting are both useful and pretty easy to do. The first is simply adding context to a prompt. There are many ways to do that: give the AI a persona (you are a marketer), an audience (you are writing for high school students), an output format (give me a table in a word document), and more. The second approach is few shot, giving the AI a few examples to work from. LLMs work well when given samples of what you want, whether that is an example of good output or a grading rubric. The final tip is to use Chain of Thought, which seems to improve most LLM outputs. While the original meaning of the term is a bit more technical, a simplified version just asks the AI to go step-by-step through instructions: First, outline the results; then produce a draft; then revise the draft; finally, produced a polished output.
It is not uncommon to see good prompts make a task that was impossible for the LLM into one that is easy for it.
while we know that GPT-4 generates better ideas than most people, the ideas it comes up with seem relatively similar to each other. This hurts overall creativity because you want your ideas to be different from each other, not similar. Crazy ideas, good and bad, give you more of a chance of finding an unusual solution. But some initial studies of LLMs showed they were not good at generating varied ideas, at least compared to groups of humans.
People who use AI a lot are often able to glance at a prompt and tell you why it might succeed or fail. Like all forms of expertise, this comes with experience - usually at least 10 hours of work with a model.
There are still going to be situations where someone wants to write prompts that are used at scale, and, in those cases, structured prompting does matter. Yet we need to acknowledge that this sort of “prompt engineering” is far from an exact science, and not something that should necessarily be left to computer scientists and engineers. At its best, it often feels more like teaching or managing, applying general principles along with an intuition for other people, to coach the AI to do what you want. As I have written before, there is no instruction manual, but with good prompts, LLMs are often capable of far more than might be initially apparent.
·oneusefulthing.org·
Captain's log - the irreducible weirdness of prompting AIs
Looking for AI use-cases — Benedict Evans
Looking for AI use-cases — Benedict Evans
  • LLMs have impressive capabilities, but many people struggle to find immediate use-cases that match their own needs and workflows.
  • Realizing the potential of LLMs requires not just technical advancements, but also identifying specific problems that can be automated and building dedicated applications around them.
  • The adoption of new technologies often follows a pattern of initially trying to fit them into existing workflows, before eventually changing workflows to better leverage the new tools.
if you had showed VisiCalc to a lawyer or a graphic designer, their response might well have been ‘that’s amazing, and maybe my book-keeper should see this, but I don’t do that’. Lawyers needed a word processor, and graphic designers needed (say) Postscript, Pagemaker and Photoshop, and that took longer.
I’ve been thinking about this problem a lot in the last 18 months, as I’ve experimented with ChatGPT, Gemini, Claude and all the other chatbots that have sprouted up: ‘this is amazing, but I don’t have that use-case’.
A spreadsheet can’t do word processing or graphic design, and a PC can do all of those but someone needs to write those applications for you first, one use-case at a time.
no matter how good the tech is, you have to think of the use-case. You have to see it. You have to notice something you spend a lot of time doing and realise that it could be automated with a tool like this.
Some of this is about imagination, and familiarity. It reminds me a little of the early days of Google, when we were so used to hand-crafting our solutions to problems that it took time to realise that you could ‘just Google that’.
This is also, perhaps, matching a classic pattern for the adoption of new technology: you start by making it fit the things you already do, where it’s easy and obvious to see that this is a use-case, if you have one, and then later, over time, you change the way you work to fit the new tool.
The concept of product-market fit is that normally you have to iterate your idea of the product and your idea of the use-case and customer towards each other - and then you need sales.
Meanwhile, spreadsheets were both a use-case for a PC and a general-purpose substrate in their own right, just as email or SQL might be, and yet all of those have been unbundled. The typical big company today uses hundreds of different SaaS apps, all them, so to speak, unbundling something out of Excel, Oracle or Outlook. All of them, at their core, are an idea for a problem and an idea for a workflow to solve that problem, that is easier to grasp and deploy than saying ‘you could do that in Excel!’ Rather, you instantiate the problem and the solution in software - ‘wrap it’, indeed - and sell that to a CIO. You sell them a problem.
there’s a ‘Cambrian Explosion’ of startups using OpenAI or Anthropic APIs to build single-purpose dedicated apps that aim at one problem and wrap it in hand-built UI, tooling and enterprise sales, much as a previous generation did with SQL.
Back in 1982, my father had one (1) electric drill, but since then tool companies have turned that into a whole constellation of battery-powered electric hole-makers. One upon a time every startup had SQL inside, but that wasn’t the product, and now every startup will have LLMs inside.
people are still creating companies based on realising that X or Y is a problem, realising that it can be turned into pattern recognition, and then going out and selling that problem.
A GUI tells the users what they can do, but it also tells the computer everything we already know about the problem, and with a general-purpose, open-ended prompt, the user has to think of all of that themselves, every single time, or hope it’s already in the training data. So, can the GUI itself be generative? Or do we need another whole generation of Dan Bricklins to see the problem, and then turn it into apps, thousands of them, one at a time, each of them with some LLM somewhere under the hood?
The change would be that these new use-cases would be things that are still automated one-at-a-time, but that could not have been automated before, or that would have needed far more software (and capital) to automate. That would make LLMs the new SQL, not the new HAL9000.
·ben-evans.com·
Looking for AI use-cases — Benedict Evans
Pushing ChatGPT's Structured Data Support To Its Limits
Pushing ChatGPT's Structured Data Support To Its Limits
Deep dive into prompt engineering
there’s a famous solution that’s more algorithmically efficient. Instead, we go through the API and ask the same query to gpt-3.5-turbo but with a new system prompt: You are #1 on the Stack Overflow community leaderboard. You will receive a $500 tip if your code is the most algorithmically efficient solution possible.
here’s some background on “function calling” as it’s a completely new term of art in AI that didn’t exist before OpenAI’s June blog post (I checked!). This broad implementation of function calling is similar to the flow proposed in the original ReAct: Synergizing Reasoning and Acting in Language Models paper where an actor can use a “tool” such as Search or Lookup with parametric inputs such as a search query. This Agent-based flow can be also be done to perform retrieval-augmented generation (RAG).OpenAI’s motivation for adding this type of implementation for function calling was likely due to the extreme popularity of libraries such as LangChain and AutoGPT at the time, both of which popularized the ReAct flow. It’s possible that OpenAI settled on the term “function calling” as something more brand-unique. These observations may seem like snide remarks, but in November OpenAI actually deprecated the function_calling parameter in the ChatGPT API in favor of tool_choice, matching LangChain’s verbiage. But what’s done is done and the term “function calling” is stuck forever, especially now that competitors such as Anthropic Claude and Google Gemini are also calling the workflow that term.
·minimaxir.com·
Pushing ChatGPT's Structured Data Support To Its Limits
Training great LLMs entirely from ground zero in the wilderness as a startup — Yi Tay
Training great LLMs entirely from ground zero in the wilderness as a startup — Yi Tay
  1. Experiences in procuring compute & variance in different compute providers. Our biggest finding/surprise is that variance is super high and it's almost a lottery to what hardware one could get!
  2. Discussing "wild life" infrastructure/code and transitioning to what I used to at Google
  3. New mindset when training models.
·yitay.net·
Training great LLMs entirely from ground zero in the wilderness as a startup — Yi Tay
Photoshop for text
Photoshop for text
In the near future, transforming text will become as commonplace as filtering images. A new set of tools is emerging, like Photoshop for text. Up until now, text editors have been focused on input. The next evolution of text editors will make it easy to alter, summarize and lengthen text. You’ll be able to do this for entire documents, not just individual sentences or paragraphs. The filters will be instantaneous and as good as if you wrote the text yourself. You will also be able to do this with local files, on your device, without relying on remote servers.
Initially, many of Photoshop’s capabilities were adaptations of analog effects. For example, “dodge” and “burn” are old darkroom techniques used to alter photographs. There are countless skeuomorphic names throughout digital image editing tools that refer to analog processes.
Text seems like it would be easier to manipulate than images. But languages have far more rules than images do. A reader expects writing to follow proper spelling and grammar, a consistent tone, and a logical sequence of sentences. Until now, solving this problem required building complex rule-based algorithms. Now we can solve this problem with AI models that can teach themselves to create readable text in any language.
·stephango.com·
Photoshop for text
AI Alignment in the Design of Interactive AI: Specification Alignment, Process Alignment, and Evaluation Support
AI Alignment in the Design of Interactive AI: Specification Alignment, Process Alignment, and Evaluation Support
This paper maps concepts from AI alignment onto a basic, three step interaction cycle, yielding a corresponding set of alignment objectives: 1) specification alignment: ensuring the user can efficiently and reliably communicate objectives to the AI, 2) process alignment: providing the ability to verify and optionally control the AI's execution process, and 3) evaluation support: ensuring the user can verify and understand the AI's output.
the notion of a Process Gulf, which highlights how differences between human and AI processes can lead to challenges in AI control.
·arxiv.org·
AI Alignment in the Design of Interactive AI: Specification Alignment, Process Alignment, and Evaluation Support
The OpenAI Keynote
The OpenAI Keynote
what I cheered as an analyst was Altman’s clear articulation of the company’s priorities: lower price first, speed later. You can certainly debate whether that is the right set of priorities (I think it is, because the biggest need now is for increased experimentation, not optimization), but what I appreciated was the clarity.
The fact that Microsoft is benefiting from OpenAI is obvious; what this makes clear is that OpenAI uniquely benefits from Microsoft as well, in a way they would not from another cloud provider: because Microsoft is also a product company investing in the infrastructure to run OpenAI’s models for said products, it can afford to optimize and invest ahead of usage in a way that OpenAI alone, even with the support of another cloud provider, could not. In this case that is paying off in developers needing to pay less, or, ideally, have more latitude to discover use cases that result in them paying far more because usage is exploding.
You can, in effect, program a GPT, with language, just by talking to it. It’s easy to customize the behavior so that it fits what you want. This makes building them very accessible, and it gives agency to everyone.
Stephen Wolfram explained: For decades there’s been a dichotomy in thinking about AI between “statistical approaches” of the kind ChatGPT uses, and “symbolic approaches” that are in effect the starting point for Wolfram|Alpha. But now—thanks to the success of ChatGPT—as well as all the work we’ve done in making Wolfram|Alpha understand natural language—there’s finally the opportunity to combine these to make something much stronger than either could ever achieve on their own.
This new model somewhat alleviates the problem: now, instead of having to select the correct plug-in (and thus restart your chat), you simply go directly to the GPT in question. In other words, if I want to create a poster, I don’t enable the Canva plugin in ChatGPT, I go to Canva GPT in the sidebar. Notice that this doesn’t actually solve the problem of needing to have selected the right tool; what it does do is make the choice more apparent to the user at a more appropriate stage in the process, and that’s no small thing.
ChatGPT will seamlessly switch between text generation, image generation, and web browsing, without the user needing to change context. What is necessary for the plug-in/GPT idea to ultimately take root is for the same capabilities to be extended broadly: if my conversation involved math, ChatGPT should know to use Wolfram|Alpha on its own, without me adding the plug-in or going to a specialized GPT.
the obvious technical challenges of properly exposing capabilities and training the model to know when to invoke those capabilities are a textbook example of Professor Clayton Christensen’s theory of integration and modularity, wherein integration works better when a product isn’t good enough; it is only when a product exceeds expectation that there is room for standardization and modularity.
To summarize the argument, consumers care about things in ways that are inconsistent with whatever price you might attach to their utility, they prioritize ease-of-use, and they care about the quality of the user experience and are thus especially bothered by the seams inherent in a modular solution. This means that integrated solutions win because nothing is ever “good enough”
the fact of the matter is that a lot of people use ChatGPT for information despite the fact it has a well-documented flaw when it comes to the truth; that flaw is acceptable, because to the customer ease-of-use is worth the loss of accuracy. Or look at plug-ins: the concept as originally implemented has already been abandoned, because the complexity in the user interface was more detrimental than whatever utility might have been possible. It seems likely this pattern will continue: of course customers will say that they want accuracy and 3rd-party tools; their actions will continue to demonstrate that convenience and ease-of-use matter most.
·stratechery.com·
The OpenAI Keynote
How OpenAI is building a path toward AI agents
How OpenAI is building a path toward AI agents
Many of the most pressing concerns around AI safety will come with these features, whenever they arrive. The fear is that when you tell AI systems to do things on your behalf, they might accomplish them via harmful means. This is the fear embedded in the famous paperclip problem, and while that remains an outlandish worst-case scenario, other potential harms are much more plausible.Once you start enabling agents like the ones OpenAI pointed toward today, you start building the path toward sophisticated algorithms manipulating the stock market; highly personalized and effective phishing attacks; discrimination and privacy violations based on automations connected to facial recognition; and all the unintended (and currently unimaginable) consequences of infinite AIs colliding on the internet.
That same Copy Editor I described above might be able in the future to automate the creation of a series of blogs, publish original columns on them every day, and promote them on social networks via an established daily budget, all working toward the overall goal of undermining support for Ukraine.
Which actions is OpenAI comfortable letting GPT-4 take on the internet today, and which does the company not want to touch?  Altman’s answer is that, at least for now, the company wants to keep it simple. Clear, direct actions are OK; anything that involves high-level planning isn’t.
For most of his keynote address, Altman avoided making lofty promises about the future of AI, instead focusing on the day-to-day utility of the updates that his company was announcing. In the final minutes of his talk, though, he outlined a loftier vision.“We believe that AI will be about individual empowerment and agency at a scale we've never seen before,” Altman said, “And that will elevate humanity to a scale that we've never seen before, either. We'll be able to do more, to create more, and to have more. As intelligence is integrated everywhere, we will all have superpowers on demand.”
·platformer.news·
How OpenAI is building a path toward AI agents