Found 5 bookmarks
Newest
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege

An experienced college essay reviewer identifies seven distinct patterns that reveal ChatGPT's writing "fingerprint" in admission essays, demonstrating how AI-generated content, despite being well-written, often lacks originality and follows predictable patterns that make it detectable to experienced readers.

Seven key indicators of ChatGPT-written essays:

  1. Specific vocabulary choices (e.g., "delve," "tapestry")
  2. Limited types of extended metaphors (weaving, cooking, painting, dance, classical music)
  3. Distinctive punctuation patterns (em dashes, mixed apostrophe styles)
  4. Frequent use of tricolons (three-part phrases), especially ascending ones
  5. Common phrase pattern: "I learned that the true meaning of X is not only Y, it's also Z"
  6. Predictable future-looking conclusions: "As I progress... I will carry..."
  7. Multiple ending syndrome (similar to Lord of the Rings movies)
·reddit.com·
In the past three days, I've reviewed over 100 essays from the 2024-2025 college admissions cycle. Here's how I could tell which ones were written by ChatGPT : r/ApplyingToCollege
Looking for AI use-cases — Benedict Evans
Looking for AI use-cases — Benedict Evans
  • LLMs have impressive capabilities, but many people struggle to find immediate use-cases that match their own needs and workflows.
  • Realizing the potential of LLMs requires not just technical advancements, but also identifying specific problems that can be automated and building dedicated applications around them.
  • The adoption of new technologies often follows a pattern of initially trying to fit them into existing workflows, before eventually changing workflows to better leverage the new tools.
if you had showed VisiCalc to a lawyer or a graphic designer, their response might well have been ‘that’s amazing, and maybe my book-keeper should see this, but I don’t do that’. Lawyers needed a word processor, and graphic designers needed (say) Postscript, Pagemaker and Photoshop, and that took longer.
I’ve been thinking about this problem a lot in the last 18 months, as I’ve experimented with ChatGPT, Gemini, Claude and all the other chatbots that have sprouted up: ‘this is amazing, but I don’t have that use-case’.
A spreadsheet can’t do word processing or graphic design, and a PC can do all of those but someone needs to write those applications for you first, one use-case at a time.
no matter how good the tech is, you have to think of the use-case. You have to see it. You have to notice something you spend a lot of time doing and realise that it could be automated with a tool like this.
Some of this is about imagination, and familiarity. It reminds me a little of the early days of Google, when we were so used to hand-crafting our solutions to problems that it took time to realise that you could ‘just Google that’.
This is also, perhaps, matching a classic pattern for the adoption of new technology: you start by making it fit the things you already do, where it’s easy and obvious to see that this is a use-case, if you have one, and then later, over time, you change the way you work to fit the new tool.
The concept of product-market fit is that normally you have to iterate your idea of the product and your idea of the use-case and customer towards each other - and then you need sales.
Meanwhile, spreadsheets were both a use-case for a PC and a general-purpose substrate in their own right, just as email or SQL might be, and yet all of those have been unbundled. The typical big company today uses hundreds of different SaaS apps, all them, so to speak, unbundling something out of Excel, Oracle or Outlook. All of them, at their core, are an idea for a problem and an idea for a workflow to solve that problem, that is easier to grasp and deploy than saying ‘you could do that in Excel!’ Rather, you instantiate the problem and the solution in software - ‘wrap it’, indeed - and sell that to a CIO. You sell them a problem.
there’s a ‘Cambrian Explosion’ of startups using OpenAI or Anthropic APIs to build single-purpose dedicated apps that aim at one problem and wrap it in hand-built UI, tooling and enterprise sales, much as a previous generation did with SQL.
Back in 1982, my father had one (1) electric drill, but since then tool companies have turned that into a whole constellation of battery-powered electric hole-makers. One upon a time every startup had SQL inside, but that wasn’t the product, and now every startup will have LLMs inside.
people are still creating companies based on realising that X or Y is a problem, realising that it can be turned into pattern recognition, and then going out and selling that problem.
A GUI tells the users what they can do, but it also tells the computer everything we already know about the problem, and with a general-purpose, open-ended prompt, the user has to think of all of that themselves, every single time, or hope it’s already in the training data. So, can the GUI itself be generative? Or do we need another whole generation of Dan Bricklins to see the problem, and then turn it into apps, thousands of them, one at a time, each of them with some LLM somewhere under the hood?
The change would be that these new use-cases would be things that are still automated one-at-a-time, but that could not have been automated before, or that would have needed far more software (and capital) to automate. That would make LLMs the new SQL, not the new HAL9000.
·ben-evans.com·
Looking for AI use-cases — Benedict Evans
This time, it feels different
This time, it feels different
In the past several months, I have come across people who do programming, legal work, business, accountancy and finance, fashion design, architecture, graphic design, research, teaching, cooking, travel planning, event management etc., all of whom have started using the same tool, ChatGPT, to solve use cases specific to their domains and problems specific to their personal workflows. This is unlike everyone using the same messaging tool or the same document editor. This is one tool, a single class of technology (LLM), whose multi-dimensionality has achieved widespread adoption across demographics where people are discovering how to solve a multitude of problems with no technical training, in the one way that is most natural to humans—via language and conversations.
I cannot recall the last time a single tool gained such widespread acceptance so swiftly, for so many use cases, across entire demographics.
there is significant substance beneath the hype. And that is what is worrying; the prospect of us starting to depend indiscriminately on poorly understood blackboxes, currently offered by megacorps, that actually work shockingly well.
If a single dumb, stochastic, probabilistic, hallucinating, snake oil LLM with a chat UI offered by one organisation can have such a viral, organic, and widespread adoption—where large disparate populations, people, corporations, and governments are integrating it into their daily lives for use cases that they are discovering themselves—imagine what better, faster, more “intelligent” systems to follow in the wake of what exists today would be capable of doing.
A policy for “AI anxiety” We ended up codifying this into an actual AI policy to bring clarity to the organisation.[10] It states that no one at Zerodha will lose their job if a technology implementation (AI or non-AI) directly renders their existing responsibilities and tasks obsolete. The goal is to prevent unexpected rug-pulls from underneath the feet of humans. Instead, there will be efforts to create avenues and opportunities for people to upskill and switch between roles and responsibilities
To those who believe that new jobs will emerge at meaningful rates to absorb the losses and shocks, what exactly are those new jobs? To those who think that governments will wave magic wands to regulate AI technologies, one just has to look at how well governments have managed to regulate, and how well humanity has managed to self-regulate, human-made climate change and planetary destruction. It is not then a stretch to think that the unraveling of our civilisation and its socio-politico-economic systems that are built on extracting, mass producing, and mass consuming garbage, might be exacerbated. Ted Chiang’s recent essay is a grim, but fascinating exploration of this. Speaking of grim, we can always count on us to ruin nice things! Along the lines of Murphy’s Law,[11] I present: Anything that can be ruined, will be ruined — Grumphy’s law
I asked GPT-4 to summarise this post and write five haikus on it. I have always operated a piece of software, but never asked it anything—that is, until now. Anyway, here is the fifth one. Future’s tangled web, Offloading choices to black boxes, Humanity’s voice fades
·nadh.in·
This time, it feels different