Traditional software is sold on a per seat subscription. More humans, more money. We are headed to a future where AI agents will replace the work humans do. But you can’t charge agents a per seat cost. So we’re headed to a world where software will be sold on a consumption model (think tasks) and then on an outcome model (think job completed) Incumbents will be forced to adapt but it’s classic innovators dilemma. How do you suddenly give up all that subscription revenue? This gives an opportunity for startups to win.
Your "Per-Seat" Margin is My Opportunity
Per-seat pricing only works when your users are human. But when agents become the primary users of software, that model collapses.
Executives aren't evaluating software against software anymore. They're comparing the combined costs of software licenses plus labor against pure outcome-based solutions. Think customer support (per resolved ticket vs. per agent + seat), marketing (per campaign vs. headcount), sales (per qualified lead vs. rep). That's your pricing umbrella—the upper limit enterprises will pay before switching entirely to AI.
enterprises are used to deterministic outcomes and fixed annual costs. Usage-based pricing makes budgeting harder. But individual leaders seeing 10x efficiency gains won't wait for procurement to catch up. Savvy managers will find ways around traditional buying processes.
This feels like a generational reset of how businesses operate. Zero upfront costs, pay only for outcomes—that's not just a pricing model. That's the future of business.
The winning strategy in my books? Give the platform away for free. Let your agents read and write to existing systems through unstructured data—emails, calls, documents. Once you handle enough workflows, you become the new system of record.
AI startups require new strategies
comment from Habitue on Hacker News: > These are some good points, but it doesn't seem to mention a big way in which startups disrupt incumbents, which is that they frame the problem a different way, and they don't need to protect existing revenue streams.
The “hard tech” in AI are the LLMs available for rent from OpenAI, Anthropic, Cohere, and others, or available as open source with Llama, Bloom, Mistral and others.
The hard-tech is a level playing field; startups do not have an advantage over incumbents.
There can be differentiation in prompt engineering, problem break-down, use of vector databases, and more. However, this isn’t something where startups have an edge, such as being willing to take more risks or be more creative. At best, it is neutral; certainly not an advantage.
This doesn’t mean it’s impossible for a startup to succeed; surely many will. It means that you need a strategy that creates differentiation and distribution, even more quickly and dramatically than is normally required
Whether you’re training existing models, developing models from scratch, or simply testing theories, high-quality data is crucial.
Incumbents have the data because they have the customers. They can immediately leverage customers’ data to train models and tune algorithms, so long as they maintain secrecy and privacy.
Intercom’s AI strategy is built on the foundation of hundreds of millions of customer interactions. This gives them an advantage over a newcomer developing a chatbot from scratch. Similarly, Google has an advantage in AI video because they own the entire YouTube library. GitHub has an advantage with Copilot because they trained their AI on their vast code repository (including changes, with human-written explanations of the changes).
While there will always be individuals preferring the startup environment, the allure of working on AI at an incumbent is equally strong for many, especially pure computer and data scientsts who, more than anything else, want to work on interesting AI projects. They get to work in the code, with a large budget, with all the data, with above-market compensation, and a built-in large customer base that will enjoy the fruits of their labor, all without having to do sales, marketing, tech support, accounting, raising money, or anything else that isn’t the pure joy of writing interesting code. This is heaven for many.
A chatbot is in the chatbot market, and an SEO tool is in the SEO market. Adding AI to those tools is obviously a good idea; indeed companies who fail to add AI will likely become irrelevant in the long run. Thus we see that “AI” is a new tool for developing within existing markets, not itself a new market (except for actual hard-tech AI companies).
AI is in the solution-space, not the problem-space, as we say in product management. The customer problem you’re solving is still the same as ever. The problem a chatbot is solving is the same as ever: Talk to customers 24/7 in any language. AI enables completely new solutions that none of us were imagining a few years ago; that’s what’s so exciting and truly transformative. However, the customer problems remain the same, even though the solutions are different
Companies will pay more for chatbots where the AI is excellent, more support contacts are deferred from reaching a human, more languages are supported, and more kinds of questions can be answered, so existing chatbot customers might pay more, which grows the market. Furthermore, some companies who previously (rightly) saw chatbots as a terrible customer experience, will change their mind with sufficiently good AI, and will enter the chatbot market, which again grows that market.
the right way to analyze this is not to say “the AI market is big and growing” but rather: “Here is how AI will transform this existing market.” And then: “Here’s how we fit into that growth.”
Muse retrospective by Adam Wiggins
- Wiggins focused on storytelling and brand-building for Muse, achieving early success with an email newsletter, which helped engage potential users and refine the product's value proposition.
- Muse aspired to a "small giants" business model, emphasizing quality, autonomy, and a healthy work environment over rapid growth. They sought to avoid additional funding rounds by charging a prosumer price early on.
- Short demo videos on Twitter showcasing the app in action proved to be the most effective method for attracting new users.
Muse as a brand and a product represented something aspirational. People want to be deeper thinkers, to be more strategic, and to use cool, status-quo challenging software made by small passionate teams. These kinds of aspirations are easier to indulge in times of plenty. But once you're getting laid off from your high-paying tech job, or struggling to raise your next financing round, or scrambling to protect your kids' college fund from runaway inflation and uncertain markets... I guess you don't have time to be excited about cool demos on Twitter and thoughtful podcasts on product design.
I’d speculate that another factor is the half-life of cool new productivity software. Evernote, Slack, Notion, Roam, Craft, and many others seem to get pretty far on community excitement for their first few years. After that, I think you have to be left with software that serves a deep and hard-to-replace purpose in people’s lives. Muse got there for a few thousand people, but the economics of prosumer software means that just isn’t enough. You need tens of thousands, hundreds of thousands, to make the cost of development sustainable.
We envisioned Muse as the perfect combination of the freeform elements of a whiteboard, the structured text-heavy style of Notion or Google Docs, and the sense of place you get from a “virtual office” ala group chat. As a way to asynchronously trade ideas and inspiration, sketch out project ideas, and explore possibilities, the multiplayer Muse experience is, in my honest opinion, unparalleled for small creative teams working remotely.
But friction began almost immediately. The team lead or organizer was usually the one bringing Muse to the team, and they were already a fan of its approach. But the other team members are generally a little annoyed to have to learn any new tool, and Muse’s steeper learning curve only made that worse. Those team members would push the problem back to the team lead, treating them as customer support (rather than contacting us directly for help). The team lead often felt like too much of the burden of pushing Muse adoption was on their shoulders.
This was in addition to the obvious product gaps, like: no support for the web or Windows; minimal or no integration with other key tools like Notion and Google Docs; and no permissions or support for multiple workspaces. Had we raised $10M back during the cash party of 2020–2021, we could have hired the 15+ person team that would have been necessary to build all of that. But with only seven people (we had added two more people to the team in 2021–2022), it just wasn’t feasible.
We neither focused on a particular vertical (academics, designers, authors...) or a narrow use case (PDF reading/annotation, collaborative whiteboarding, design sketching...). That meant we were always spread pretty thin in terms of feature development, and marketing was difficult even over and above the problem of explaining canvas software and digital thinking tools.
being general-purpose was in its blood from birth. Part of it was maker's hubris: don't we always dream of general-purpose tools that will be everything to everyone? And part of it was that it's truly the case that Muse excels at the ability to combine together so many different related knowledge tasks and media types into a single, minimal, powerful canvas. Not sure what I would do differently here, even with the benefit of hindsight.
Muse built a lot of its reputation on being principled, but we were maybe too cautious to do the mercenary things that help you succeed. A good example here is asking users for ratings; I felt like this was not to user benefit and distracting when the user is trying to use your app. Our App Store rating was on the low side (~3.9 stars) for most of our existence. When we finally added the standard prompt-for-rating dialog, it instantly shot up to ~4.7 stars. This was a small example of being too principled about doing good for the user, and not thinking about what would benefit our business.
Growing the team slowly was a delight. At several previous ventures, I've onboard people in the hiring-is-job-one environment of a growth startup. At Muse, we started with three founders and then hired roughly one person per year. This was absolutely fantastic for being able to really take our time to find the perfect person for the role, and then for that person to have tons of time to onboard and find their footing on the team before anyone new showed up. The resulting team was the best I've ever worked on, with minimal deadweight or emotional baggage.
ultimately your product does have to have some web presence. My biggest regret is not building a simple share-to-web function early on, which could have created some virality and a great deal of utility for users as well.
In terms of development speed, quality of the resulting product, hardware integration, and a million other things: native app development wins.
After decades working in product development, being on the marketing/brand/growth/storytelling side was a huge personal challenge for me. But I feel like I managed to grow into the role and find my own approach (podcasting, demo videos, etc) to create a beacon to attract potential customers to our product.
when it comes time for an individual or a team to sit down and sketch out the beginnings of a new business, a new book, a new piece of art—this almost never happens at a computer. Or if it does, it’s a cobbled-together collection of tools like Google Docs and Zoom which aren’t really made for this critical part of the creative lifecycle.
any given business will find a small number of highly-effective channels, and the rest don't matter. For Heroku, that was attending developer conferences and getting blog posts on Hacker News. For another business it might be YouTube influencer sponsorships and print ads in a niche magazine. So I set about systematically testing many channels.
Generative AI’s Act Two
This page also has many infographics providing an overview of different aspects of the AI industry at time of writing.
We still believe that there will be a separation between the “application layer” companies and foundation model providers, with model companies specializing in scale and research and application layer companies specializing in product and UI. In reality, that separation hasn’t cleanly happened yet. In fact, the most successful user-facing applications out of the gate have been vertically integrated.
We predicted that the best generative AI companies could generate a sustainable competitive advantage through a data flywheel: more usage → more data → better model → more usage. While this is still somewhat true, especially in domains with very specialized and hard-to-get data, the “data moats” are on shaky ground: the data that application companies generate does not create an insurmountable moat, and the next generations of foundation models may very well obliterate any data moats that startups generate. Rather, workflows and user networks seem to be creating more durable sources of competitive advantage.
Some of the best consumer companies have 60-65% DAU/MAU; WhatsApp’s is 85%. By contrast, generative AI apps have a median of 14% (with the notable exception of Character and the “AI companionship” category). This means that users are not finding enough value in Generative AI products to use them every day yet.
generative AI’s biggest problem is not finding use cases or demand or distribution, it is proving value. As our colleague David Cahn writes, “the $200B question is: What are you going to use all this infrastructure to do? How is it going to change people’s lives?”
Brex’s Second Act