0 Glyconutrients

1642 bookmarks
Newest
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF) has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.
·mdpi.com·
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
Focus Drug Development Variable Effects of Autophagy Induction by Treh (...)
Focus Drug Development Variable Effects of Autophagy Induction by Treh (...)
Trehalose is a non-reducing sugar formed from two glucose units. Trehalose induces abundant autophagy in cultured cells and also reduces the rate of aggregation of the huntingtin protein in the animal model of Huntington disease, a chronic neurological ...
·ncbi.nlm.nih.gov·
Focus Drug Development Variable Effects of Autophagy Induction by Treh (...)
Mechanism study of endothelial protection and inhibits platelet activa (...)
Mechanism study of endothelial protection and inhibits platelet activa (...)
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg−1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
·link.springer.com·
Mechanism study of endothelial protection and inhibits platelet activa (...)
Endocalyx Supplement Supports Glycocalyx Health - YouTube
Endocalyx Supplement Supports Glycocalyx Health - YouTube
Years of research have exposed an understanding of the function and structure of the protective gel lining in your circulatory, or vascular system, called the glycocalyx. A new, proprietary, patent-pending dietary supplement named Endocalyx, is specifically formulated to deliver the building blocks essential to maintain a healthy glycocalyx and microvascular system. The ingredients are sourced from regions around the world where people are known to live longer and live healthy active lives. Endocalyx is made from concentrated extracts of seven natural ingredients. These ingredients contain the same compounds that make up and protect the structure of the glycocalyx. It’s a specific blend, right down to the molecular structure that makes all the difference in the result of taking Endocalyx daily. This patent-pending combination of ingredients, in specific dosage amounts, stimulate three actions that restore, rejuvenate and protect your glycocalyx and microvascular system. The first result of this specific blend comes from polysaccharides that restore the protective structure of the glycocalyx. The second result comes from the amino sugars that rejuvenate your body’s ability to produce more of the glycocalyx protective gel. And the third result comes from antioxidants that work to protect the glycocalyx from breaking down. Scientific research backs up that these synergistic ingredients, when combined together, deliver these vital results in your microvascular system. In fact, several Universities and hospitals around the world are conducting research projects right now. And the list of research papers written by medical professionals continues to grow. And importantly, a growing list of researchers now understand the paradigm-shifting advantages of combining these ingredients. As Endocalyx strengthens the glycocalyx, it helps optimize the structure of the capillaries. From head to toe, optimal capillary function delivers many benefits, including clearer thinking, increased energy, improved performance, more youthful appearance, and greater comfort. The better each brain cell is supplied with oxygen and nutrients, the better your mood, the clearer your mind, the more productive your thinking.* Healthy skin, hair, and eyes depend on a steady supply of oxygen and nutrients in order to renew, grow, and stay healthy.* Skin color and tone are enhanced.* Your hair and nails are stronger and healthier.* And your eyes are clearer and brighter.* As Endocalyx strengthens the glycocalyx, the blood in your entire vascular system is better able to reach and energize each cell of your body. Then all the cells of your body, including your brain, heart, and muscles, are amply supplied with oxygen and nutrients.* This means that more blood cells, carrying more nutrients and vital oxygen to all of your muscle, skin, and nerve cells, restore warmth, feeling and comfort.* Don’t wait another minute! Wake up and listen to your body’s early warning signs that your glycocalyx and microvascular system is breaking down. Take control of tomorrow now by starting daily use of Endocalyx today. It’s not too late to restore, rejuvenate and protect your glycocalyx and microvascular system. Order now and save $20 with monthly autoship … and get free shipping at Microvascular.com. *These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
·youtube.com·
Endocalyx Supplement Supports Glycocalyx Health - YouTube
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
·link.springer.com·
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Aloe vera gel is a potential material as raw material industry, this is because a very complex composition. However Aloe vera gel is very easily oxidized or unstable. Viscosity gel and the benefit are decreased at room temperature after 24-36 hours. This research aims to obtain information about the resistance to oxidation via nitogren gas treatment and antioxidants, as well as the influence of phase changes in an attempt to retain the characteristics of the physicochemical Aloe vera gel over time. This Study can be described a conclusion that the best storage conditions are sound-proofed temperature conditions (4 ± 1)oc. Environmental conditioning by administering nitrogen gas storage and antioxidant Buthylated Hydroxytoluene (BHT) 750 ppm for 4 weeks defending the nature physicochemical Aloe vera gel. Freeze drying process of Aloe vera gel that has filled gum Arabic 3 % generates a more homogenous powder and smaller and more.
·repository.warmadewa.ac.id·
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
·link.springer.com·
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important ...
·onlinelibrary.wiley.com·
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and …
·pubmed.ncbi.nlm.nih.gov·
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Glycocalyx Structure and Function Explained - YouTube
Glycocalyx Structure and Function Explained - YouTube
One of the most essential elements for your good health lies in the endothelial glycocalyx, a vast protective gel lining of all of our capillaries that touches each of your trillions of cells. In this video, travel inside your vascular system and flow along with your blood. Every cell of your body is nourished by the blood that travels through the capillaries that make up 99% of your circulatory system-from head to toe. Placed end-to-end, scientists estimate they would extend 60,000 miles, enough to go around the earth two and a half times. With every heartbeat, vital nutrients and oxygen are delivered and waste is removed from each cell. This essential process breaks down with aging, poor diet, lack of exercise, genetics, stress and smoking. New medical science has revealed the importance of a transparent micro-thin gel-like lining in your blood vessels that protects your entire circulatory system. In the past, blood vessels were thought to be simple hollow tubes. But with today’s high resolution video microscopes, a discovery reveals that the entire circulatory system is coated with a gel like lining that protects the inside walls of the arteries, veins and capillaries. This protective gel-like lining of the capillaries and all other blood vessels is called the glycocalyx. Its integrity is essential to the healthy function of all the cells, organs and body systems. The glycocalyx keeps your body healthy in three critical ways. First, it functions as the natural trigger that stimulates the production of nitric oxide. Nitric oxide is vital in controlling blood flow and blood pressure. The glycocalyx stores anti-oxidants and, working together with nitric oxide, both increase blood flow, on demand, when organs call for it. For example, when you’re walking upstairs. Or even when your brain is working through a difficult problem. Bottom line: your body needs a thick and healthy glycocalyx to efficiently regulate blood flow. Second, a healthy glycocalyx allows your body to engage more of the available capillaries of the microvascular system when blood flow increases. This is critical to regulate the supply of nutrients and oxygen, and the removal of waste and carbon dioxide, according to the body’s level of activity, such as when you exercise. Bottom line: While blood flow control is important, the glycocalyx allows your body to engage more capillaries when organs demand nourishment and waste removal. Third, capillaries are much more than simple hollow tubes. In fact, their inner surface is coated with the non-stick glycocalyx that prevents loss of capillaries through fluid leakage, blood clotting and inflammation. This coating prevents sticking when you don’t need it, and it keeps blood clotting and inflammation under control. For example, when your body’s healthy, it can repair a simple cut or fight an infection. Bottom line: a healthy glycocalyx not only engages more capillaries when blood flow goes up, but it also protects the capillary network and even the entire vascular system from deterioration and loss. Ongoing clinical research from more than 85 studies confirms that a compromised glycocalyx and a damaged microvascular system are linked to organ starvation. Early warning signs of organ starvation include cold hands and feet, leg cramps, skin problems, hair thinning, fatigue, lack of focus, memory loss, certain eye problems, hearing loss, severe PMS, erectile dysfunction, high blood pressure, and even type 2 diabetes. Emerging research is beginning to show that it’s not too late to slow down, or even reverse, the breakdown of the protective properties of the glycocalyx. Learn more about this and how to restore, protect and regenerate the glycocalyx at Microvascular.com. Images from this study co-authored by Dr. Hans Vink, Chief Science Officer of GlycoCheck and Microvascular Health Solutions: Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease (https://journals.lww.com/colipidology/Abstract/2009/02000/Endothelial_glycocalyx_as_potential_diagnostic_and.11.aspx). Broekhuizen LN, Mooij HL, Kastelein JJ, Stroes ES, Vink H, Nieuwdorp M. Curr Opin Lipidol. 2009 Feb;20(1):57-62.
·youtube.com·
Glycocalyx Structure and Function Explained - YouTube
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL−1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300–400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around −30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
·mdpi.com·
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
The pretreatment of aqueous extract of Aloe vera leaf in rats proved to act as a potential antioxidant which could be implicated toward protection of the integrity of liver of rat against pesticide i...
·onlinelibrary.wiley.com·
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Seaweeds have received huge interest in recent years given their promising potentialities. Their antioxidant, anti-inflammatory, antitumor, hypolipemic, and anticoagulant effects are among the most renowned and studied bioactivities so far, and these effects have been increasingly associated with their content and richness in both primary and secondary metabolites. Although primary metabolites have a pivotal importance such as their content in polysaccharides (fucoidans, agars, carragenans, ulvans, alginates, and laminarin), recent data have shown that the content in some secondary metabolites largely determines the effective bioactive potential of seaweeds. Among these secondary metabolites, phenolic compounds feature prominently. The present review provides the most remarkable insights into seaweed research, specifically addressing its chemical composition, phytopharmacology, and cosmetic applications.
·mdpi.com·
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Nutrients Free Full-Text Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle In Vitro and In Vivo Model HTML
Nutrients Free Full-Text Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle In Vitro and In Vivo Model HTML
Laminaria japonica (LJ) and Hizikia fusiforme (HF) are brown seaweeds known to have various health-promoting effects. In this study, we investigated the anti-diabetic effects and possible mechanism(s) of LJ and HF by using both in vitro and in vivo models. C2C12 myotubes, mouse-derived skeletal muscle cells, treated with LF or HF extracts were used for the in vitro model, and muscle tissues from C57BL/6N mice fed a high-fat diet supplemented with 5% LF or HF for 16 weeks were used for the in vivo model. Although both the LF and HF extracts significantly inhibited α-glucosidase activity in a dose-dependent manner, the HF extract had a superior α-glucosidase inhibition than the LF extract. In addition, glucose uptake was significantly increased by LJ- and HF-treated groups when compared to the control group. Phosphorylation of protein kinase B and AMP-activated protein kinase was induced by LJ and HF in both the vivo and in vitro skeletal muscle models. Furthermore, LJ and HF significantly decreased tumor necrosis factor-α whereas both extracts increased interleukin (IL)-6 and IL-10 production in lipopolysaccharide-stimulated C2C12 myotubes. Taken together, these findings imply that the brown seaweeds LJ and HF could be useful therapeutic agents to attenuate muscle insulin resistance due to diet-induced obesity and its associated inflammation.
·mdpi.com·
Nutrients Free Full-Text Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle In Vitro and In Vivo Model HTML
Nutrients Free Full-Text Oligo-Fucoidan Improves Diabetes-Induced Renal Fibrosis via Activation of Sirt-1, GLP-1R, and Nrf2HO-1 An In Vitro and In Vivo Study HTML
Nutrients Free Full-Text Oligo-Fucoidan Improves Diabetes-Induced Renal Fibrosis via Activation of Sirt-1, GLP-1R, and Nrf2HO-1 An In Vitro and In Vivo Study HTML
Fucoidan extracted from brown algae has multiple beneficial functions. In this study, we investigated the effects of low-molecular-weight fucoidan (oligo-FO) on renal fibrosis under in vitro and in vivo diabetic conditions, and its molecular mechanisms. Advanced glycation product (AGE)-stimulated rat renal proximal tubular epithelial cells (NRK-52E) and diabetic mice induced by high-fat diet and intraperitoneal injection of streptozotocin and nicotinamide were used. Oligo-FO treatment significantly inhibited anti-high mobility group box 1 (HMGB1)/RAGE/ anti-nuclear factor-kappa B (NF-κB)/transforming growth factor-β1 (TGF-β1)/TGF-β1R/Smad 2/3/fibronectin signaling pathway and HIF-1α activation in AGE-stimulated NRK-52E cells. Conversely, the expression and activity of Sirt-1; the levels of ubiquitin-specific peptidase 22 (USP22), p-AMPK, glucagon-like peptide-1 receptor (GLP-1R), and heme oxygenase-1 (HO-1); and Nrf2 activation were remarkably increased by oligo-FO in AGE-stimulated cells. However, the above effects of oligo-FO were greatly diminished by inhibiting Sirt-1, HO-1, or GLP-1R activity. Similar changes of these pro-fibrotic genes in the kidney and a marked attenuation of renal injury and dysfunction were observed in oligo-FO-treated diabetic mice. These findings indicated that the inhibitory effects of the oligo-FO on diabetes-evoked renal fibrosis are mediated by suppressing TGF-β1-activated pro-fibrogenic processes via Sirt-1, HO-1, and GLP-1R dependence. Collectively, fucoidan-containing foods or supplements may be potential agents for ameliorating renal diseases due to excessive fibrosis.
·mdpi.com·
Nutrients Free Full-Text Oligo-Fucoidan Improves Diabetes-Induced Renal Fibrosis via Activation of Sirt-1, GLP-1R, and Nrf2HO-1 An In Vitro and In Vivo Study HTML
Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p (...)
Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p (...)
Low-molecular-weight Fucoidan (Oligo-Fucoidan) is a sulfated polysaccharide that has a variety of biological effects and has also been shown to have beneficial health effects. However, the molecular mechanisms underlying the therapeutic effects of Oligo-Fucoidan ...
·ncbi.nlm.nih.gov·
Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p (...)
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibitin (...)
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibitin (...)
Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.
·nature.com·
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibitin (...)
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway Scientific Reports
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway Scientific Reports
Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.
·nature.com·
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway Scientific Reports