0 Glyconutrients

1650 bookmarks
Newest
Microvascular Health Solutions - YouTube
Microvascular Health Solutions - YouTube
13 early warning signs all point to a single hidden problem. Your microvascular system may be breaking down, and your organs could be slowly starving and you don’t even know it. These early warning signs may be caused by a problem hidden in the smallest blood vessels in your body—your microscopic capillaries. Learn more at https://microvascular.com/.
·youtube.com·
Microvascular Health Solutions - YouTube
How the Glycocalyx Breaks Down - YouTube
How the Glycocalyx Breaks Down - YouTube
You may not know it, but like so many people, your body could be on a perilous journey down a spiral of troubling conditions and silent killers. Healthy organs are nourished with vital nutrients and oxygen, while waste and carbon dioxide are removed with every heartbeat—if the microscopic capillaries that feed all of the cells in your body are thriving. But that process can be severely impaired—and life-supporting capillaries can even disappear if their protective gel-like lining—the glycocalyx—is damaged. Let’s see how easily—and silently—this happens. Over time, aging, poor diet, lack of exercise, genetics, stress, smoking—and even conditions such as diabetes and high blood pressure—combined with other risk factors—can slowly, but surely, break down the glycocalyx. Damaged microvessels—your capillaries, for the most part—become leaky, lose function, and their numbers decrease. So, the vital delivery of nutrients, hormones, and oxygen is compromised—as is the removal of waste and carbon dioxide. The downward spiral continues. Deprived of this critical, regenerative exchange, organ starvation begins, weakening vital processes in the heart, kidneys, lungs, and brain. Diseases and conditions can set in, including heart and kidney disease, lung disease, stroke and dementia, septic shock, inflammatory disorders—and even cancer metastasis. With so many areas of the body and its functions under attack, complications develop. Critical organs fail—one after the next. Finally, the body’s ability to keep up with the assault fails, and can lead to death. Fortunately, this spiral of breakdowns can be identified in the early stages so you can make changes before it’s too late. Learn more by clicking the button below or visiting https://microvascular.com/.
·youtube.com·
How the Glycocalyx Breaks Down - YouTube
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Alzheimer’s disease (AD) is a chronic neurodegenerative disease which contributes to memory loss and cognitive decline in the elderly. Fucoidan, extracted from brown algae, is a complex sulfated polysaccharide and potential bioactive compound. In this study, we investigated whether fucoidan protects PC12 cells from apoptosis induced by a combination of beta-amyloid 25–35 (Aβ25–35) and d-galactose (d-Gal), and improves learning and memory impairment in AD model mice. The results indicated that fucoidan could inhibit the release of cytochrome c from the mitochondria to cytosol and activation of caspases, and increase the expression of apoptosis inhibitor proteins (IAPs), including livin and X-linked IAP (XIAP) in PC12 cells damaged by Aβ25–35 and d-Gal-induction. Fucoidan reversed the decreased activity of acetylcholine (ACh) and choline acetyl transferase (ChAT), as well as the increased activity of acetylcholine esterase (AChE), in AD model mice induced by infusion of d-Gal. Furthermore, fucoidan improved antioxidant activity in vitro and in vivo by activation of superoxide dismutase (SOD) and glutathione (GSH). These results suggested that fucoidan could protect PC12 cells from apoptosis and ameliorate the learning and memory impairment in AD model mice, which appeared to be due to regulating the cholinergic system, reducing oxidative stress, and inhibiting the caspase-dependent apoptosis pathway.
·mdpi.com·
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
·mdpi.com·
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
The Effects of Aloe Vera on TNF-a Levels, the Percentage of Nk Cells a (...)
The Effects of Aloe Vera on TNF-a Levels, the Percentage of Nk Cells a (...)
The present study was undertaken to investigate the hepatoprotective effect of Aloe vera against side effect of antituberculosis drug.Twenty-five rats will be divided into five groups, namely the control group (without any treatment), the group of rats ...
·ncbi.nlm.nih.gov·
The Effects of Aloe Vera on TNF-a Levels, the Percentage of Nk Cells a (...)
Hypoxia-Induced Neuroinflammation and Learning–Memory Impairments in A (...)
Hypoxia-Induced Neuroinflammation and Learning–Memory Impairments in A (...)
This study investigated changes in neuroinflammation and cognitive function in adult zebrafish exposed to acute hypoxia and protective effects of glucosamine (GlcN) against hypoxia-induced brain damage. The survival rate of zebrafish following exposure to hypoxia was improved by GlcN pretreatment. Moreover, hypoxia-induced upregulation of neuroglobin, NOS2α, glial fibrillary acidic protein, and S100β in zebrafish was suppressed by GlcN. Hypoxia stimulated cell proliferation in the telencephalic ventral domain and in cerebellum subregions. GlcN decreased the number of bromodeoxyuridine (BrdU)-positive cells in the telencephalon region, but not in cerebellum regions. Transient motor neuron defects, assessed by measuring the locomotor and exploratory activity of zebrafish exposed to hypoxia recovered quickly. GlcN did not affect hypoxia-induced motor activity changes. In passive avoidance tests, hypoxia impaired learning and memory ability, deficits that were rescued by GlcN. A learning stimulus increased the nuclear translocation of phosphorylated cAMP response element binding protein (p-CREB), an effect that was greatly inhibited by hypoxia. GlcN restored nuclear p-CREB after a learning trial in hypoxia-exposed zebrafish. The neurotransmitters, γ-aminobutyric acid and glutamate, were increased after hypoxia in the zebrafish brain, and GlcN further increased their levels. In contrast, acetylcholine levels were reduced by hypoxia and restored by GlcN. Acetylcholinesterase inhibitor physostigmine partially reversed the impaired learning and memory of hypoxic zebrafish. This study represents the first examination of the molecular mechanisms underlying hypoxia-induced memory and learning defects in a zebrafish model. Our results further suggest that GlcN-associated hexosamine metabolic pathway could be an important therapeutic target for hypoxic brain damage.
·link.springer.com·
Hypoxia-Induced Neuroinflammation and Learning–Memory Impairments in A (...)
INFLUENCE OF VAGINAL ADMINISTRATION OF GLUCOSAMINE HYDROCHLORIDE TO PS (...)
INFLUENCE OF VAGINAL ADMINISTRATION OF GLUCOSAMINE HYDROCHLORIDE TO PS (...)
The significant place in the menopausal syndrome and deficiency of estrogens takes psycho-emotional disorders. Psychosomatic disorders, difficulty of adequate evaluation and correction in menopausal women evidence the fact that this issue is important today. Severe symptoms of menopausal syndrome at violation of psycho-vegetative sphere appear in the early post-menopause, due to final termination of ovarian function and sharply deficiency of estrogens during this period. Intravaginal administration of glucosamine hydrochloride to spay female rats has moderate anti-depressant and anxiolytic effects, accompanied by reduction of the psycho-emotional behavioral reactions, normalization of locomotor activity of animals. As of totality of effects, the estriol reference drug is better than glucosamine hydrochloride. The data reveal prospects of vaginal gel glucosamine hydrochloride in the treatment of menopausal disorders of various origins.
·eu-jr.eu·
INFLUENCE OF VAGINAL ADMINISTRATION OF GLUCOSAMINE HYDROCHLORIDE TO PS (...)
Medicines Free Full-Text Glucosamine Enhances TRAIL-Induced Apoptosis in the Prostate Cancer Cell Line DU145 HTML
Medicines Free Full-Text Glucosamine Enhances TRAIL-Induced Apoptosis in the Prostate Cancer Cell Line DU145 HTML
Background: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively kills tumor cells in cancer patients. However, patients often develop TRAIL resistance; thus, agents that can sensitize cells to TRAIL therapy would be beneficial clinically. Methods: Immunoblotting, flow cytometry, confocal microscopy, qPCR and caspase 8 activity assays were used to investigate whether glucosamine (GlcN) can sensitize cancer cells to TRAIL thereby enhancing apoptosis and potentially improving clinical response. Results: GlcN sensitized DU145 cells to TRAIL-induced apoptosis but did not increase death receptor 5 (DR5) cell surface expression. Once treated, these cells responded to TRAIL-induced apoptosis through both extrinsic and intrinsic apoptotic pathways as evidenced by the cleavage of both caspases 8 and 9. The combination of GlcN and TRAIL suppressed the expression of key anti-apoptotic factors cFLIP, BCL-XL, MCL-1 and XIAP and translocated BAK to the mitochondrial outer membrane thereby facilitating cytochrome C and SMAC release. In addition to the activation of apoptotic pathways, TRAIL-mediated inflammatory responses were attenuated by GlcN pretreatment reducing nuclear NF-kB levels and the expression of downstream target genes IL-6 and IL-8. Conclusions: GlcN/TRAIL combination could be a promising strategy for treating cancers by overcoming TRAIL resistance and abrogating TRAIL-induced inflammation.
·mdpi.com·
Medicines Free Full-Text Glucosamine Enhances TRAIL-Induced Apoptosis in the Prostate Cancer Cell Line DU145 HTML
The Healing Effect of Plantago Major and Aloe Vera Mixture in Excisional Full Thickness Skin Wounds Stereological Study - World Journal of Plastic Surgery
The Healing Effect of Plantago Major and Aloe Vera Mixture in Excisional Full Thickness Skin Wounds Stereological Study - World Journal of Plastic Surgery
BACKGROUND Previous studies indicated that both Plantago major and Aloe vera have anti-inflammatory, tissue regeneration, antioxidant, and immune-stimulatory effects. It is assumed that a mixture of these two herbal medicines may provide a potent material in treatment of skin wound injuries. Therefore, in this study we investigated the effects of Plantago major ...
·wjps.ir·
The Healing Effect of Plantago Major and Aloe Vera Mixture in Excisional Full Thickness Skin Wounds Stereological Study - World Journal of Plastic Surgery
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF) has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.
·mdpi.com·
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Aloe vera gel is a potential material as raw material industry, this is because a very complex composition. However Aloe vera gel is very easily oxidized or unstable. Viscosity gel and the benefit are decreased at room temperature after 24-36 hours. This research aims to obtain information about the resistance to oxidation via nitogren gas treatment and antioxidants, as well as the influence of phase changes in an attempt to retain the characteristics of the physicochemical Aloe vera gel over time. This Study can be described a conclusion that the best storage conditions are sound-proofed temperature conditions (4 ± 1)oc. Environmental conditioning by administering nitrogen gas storage and antioxidant Buthylated Hydroxytoluene (BHT) 750 ppm for 4 weeks defending the nature physicochemical Aloe vera gel. Freeze drying process of Aloe vera gel that has filled gum Arabic 3 % generates a more homogenous powder and smaller and more.
·repository.warmadewa.ac.id·
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
The Protective Effect of Aloe Vera on Histological Structure of Endocr (...)
The Protective Effect of Aloe Vera on Histological Structure of Endocr (...)
Introduction: Since aloe vera plant has many medical benefits, the present study aimed to investigate the protective effects of Aloe vera gel on the pancreatic islets and beta cells. Methods: This experimental study consisted of 50 mature male rats aged 2-3 months and weighed 200-250 g, who were randomly divided ...
·jssu.ssu.ac.ir·
The Protective Effect of Aloe Vera on Histological Structure of Endocr (...)
Mechanism study of endothelial protection and inhibits platelet activa (...)
Mechanism study of endothelial protection and inhibits platelet activa (...)
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg−1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
·link.springer.com·
Mechanism study of endothelial protection and inhibits platelet activa (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
·link.springer.com·
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
·link.springer.com·
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
The pretreatment of aqueous extract of Aloe vera leaf in rats proved to act as a potential antioxidant which could be implicated toward protection of the integrity of liver of rat against pesticide i...
·onlinelibrary.wiley.com·
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important ...
·onlinelibrary.wiley.com·
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
Good News Health with Dr. Milton Teske - #4 The Glycocalyx - YouTube
Good News Health with Dr. Milton Teske - #4 The Glycocalyx - YouTube
In this series you will gain the clearest explanation you will ever hear to help you understand how to completely reverse Type 2 Diabetes, how to understand your lipid profile LDL, HDL and VLDL, and how to reverse atherosclerotic coronary artery disease naturally. In addition, you will learn the extremely harmful effects of sugar, and you will understand how the structure lining the arteries plays a critical role in health and arterial disease. 1. Reversing Diabetes 2. Lowering Cholesterol Naturally 3. Fructose Poisoning of the Liver 4. The Glycocalyx
·youtube.com·
Good News Health with Dr. Milton Teske - #4 The Glycocalyx - YouTube
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and …
·pubmed.ncbi.nlm.nih.gov·
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL−1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300–400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around −30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
·mdpi.com·
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery