Gastrointestinal Region Specific Insulin Permeation Enhancement b... Ingenta Connect
0 Glyconutrients
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Alzheimer’s disease (AD) is a chronic neurodegenerative disease which contributes to memory loss and cognitive decline in the elderly. Fucoidan, extracted from brown algae, is a complex sulfated polysaccharide and potential bioactive compound. In this study, we investigated whether fucoidan protects PC12 cells from apoptosis induced by a combination of beta-amyloid 25–35 (Aβ25–35) and d-galactose (d-Gal), and improves learning and memory impairment in AD model mice. The results indicated that fucoidan could inhibit the release of cytochrome c from the mitochondria to cytosol and activation of caspases, and increase the expression of apoptosis inhibitor proteins (IAPs), including livin and X-linked IAP (XIAP) in PC12 cells damaged by Aβ25–35 and d-Gal-induction. Fucoidan reversed the decreased activity of acetylcholine (ACh) and choline acetyl transferase (ChAT), as well as the increased activity of acetylcholine esterase (AChE), in AD model mice induced by infusion of d-Gal. Furthermore, fucoidan improved antioxidant activity in vitro and in vivo by activation of superoxide dismutase (SOD) and glutathione (GSH). These results suggested that fucoidan could protect PC12 cells from apoptosis and ameliorate the learning and memory impairment in AD model mice, which appeared to be due to regulating the cholinergic system, reducing oxidative stress, and inhibiting the caspase-dependent apoptosis pathway.
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
Gel aloe vera reduces MMP-9 in diabetic wounds
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF) has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.
Short-term treatment with glucosamine hydrochloride specifically downr (...)
Hypoxia-inducible factor-1 (HIF-1) is a tumor angiogenic transcription factor composed of an α and β subunit. We investigated the effect of glucosamine hydrochloride (GS-HCl) on the expression of HIF-1α and HIF-1β in serum‑treated YD-8 human tongue cancer cells. While long-term (24 h) treatment with GS-HCl strongly repressed the expression of HIF-1α and HIF-1β at both the protein and mRNA levels, short-term (4 h) GS-HCl treatment inhibited HIF-1α at the protein level. Short-term GS-HCl treatment also decreased phosphorylation of p70S6K and S6, translation-related proteins. However, the results of subsequent pharmacological inhibition and protein stability analyses indicated that HIF-1α protein downregulation induced by short-term GS-HCl treatment was not through modulation of the mTOR/p70S6K/S6 signaling pathways, the 26S proteasomal and lysosomal activities and HIF-1α protein stability. Importantly, our further analyses identified that HIF-1α protein downregulation induced by short-term GS-HCl treatment was blunted by exogenous administration of the citric acid cycle metabolites citrate and 2-oxoglutarate, but not the glycolytic end byproducts pyruvate and lactate. These findings demonstrate firstly that short-term GS treatment selectively downregulates HIF-1α at the protein level in YD-8 cells via interference of production of the citric acid cycle metabolites. It is proposed that short-term GS-HCl exposure may be applied for the treatment of oral tumors with high expression of HIF-1α.
Thieme E-Journals - Planta Medica International Open Abstract
Thieme E-Books & E-Journals
The Contribution of D-Glucosamine to Cell Membrane Stability Mechanisms and Applications in Regenerative Medicine SpringerLink
Chitosan is a well-known biomaterial. D-glucosamine, which consists of a natural amino monosaccharide, is the smallest molecular weight of chitosan. D-glucosamine is widely used for relieving the...
Topical Aloe Vera Gel for Accelerated Wound Healing of Split... Plastic and Reconstructive Surgery
For more than 70 years Plastic and Reconstructive Surgery® has been the one consistently excellent reference for every specialist who uses plastic surgery techniques or works in conjunction with a plastic surgeon. The journal brings readers up-to-the-minute reports on the latest techniques and follow-up for maxillofacial reconstruction, burn repair, cosmetic reshaping, as well as news on medicolegal issues. The cosmetic section provides expanded coverage on new procedures and techniques.
The effect of glucosamine on glucose metabolism in humans a systematic (...)
Glucosamine is commonly used for the treatment of osteoarthritis. It is available as an over the counter preparation and also as a prescription pharmaceutical. There is concern from animal experiments that glucosamine may alter glucose metabolism through the hexosamine biosynthetic pathway. The objective of this systematic review is to determine if exogenous glucosamine adversely affects glucose metabolism in humans. This review does not separate out the effects on glucose metabolism of the various glucosamine preparations.
The impact of glucosamine on age-related macular degeneration in patients A nationwide, population-based cohort study
Purpose To analyze the association between glucosamine (GlcN) use and the risk of age-related macular degeneration (AMD) using claims data from the National Health Insurance Research Database (NHIRD). Methods A retrospective, population-based study was conducted with NHIRD data from a 14-year period (2000–2013). Chi-squared and Student’s t-tests were used to evaluate differences between the study and comparison cohorts for categorical and continuous variables, respectively. Risk factors for disease development were examined by the adjusted hazard ratio (aHR) with 95% confidence interval. Kaplan-Meier analysis was performed to compare the cumulative risk of AMD between the two cohorts. Results In total, 1,344 patients with GlcN treatment were enrolled in the study cohort and 5,376 patients without GlcN use were enrolled in the comparison cohort. The incidence rate of AMD was lower with GlcN use (3.65%) than without GlcN use (5.26%) (P = 0.014). GlcN use was associated with a lower risk of developing AMD among patients with hyperlipidemia, coronary artery disease, chronic obstructive pulmonary disease, stroke, other neurological disorders, or degenerative arthritis. Although the incidence of wet type AMD did not significantly differ (P = 0.91), the incidence of dry type AMD was lower in patients with GlcN use (2.9%) than those without GlcN use (4.84%) (P = 0.003). Kaplan-Meier analysis similarly revealed a lower rate of dry type AMD in patients with GlcN use compared to those without GlcN use (log-rank P = 0.004). Conclusions GlcN treatment can decrease the risk of developing dry type AMD. Further prospective controlled studies are needed to determine the effectiveness of GlcN treatment in patients with AMD and the associated mechanism.
Ultrasound mediated accelerated Anti-influenza activity of Aloe vera. - PubMed - NCBI
Aloe vera (AV) is popular and has been commercialized as a beauty product, laxative, herbal medicine, the antimicrobial activity of AV is proven. The antiviral activity of AV however, has not been well documented except for a handful reports. Till date extraction of AV compounds is popularized using …
Use of glucosamine and chondroitin supplements in relation to risk of (...)
What's New? In this prospective study, the authors asked whether regular use of glucosamine and chondroitin supplements might reduce the risk of colorectal cancer (CRC). They found that the combinati...
Zahedan Journal of Research in Medical Sciences - Protective Effects o (...)
Reproductive problems such as impaired folliculogenesis and anovulation are observed in diabetic women. ...
Marine Polysaccharides in Pharmaceutical Applications Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field - Google Search
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Aloe vera gel is a potential material as raw material industry, this is because a very complex composition. However Aloe vera gel is very easily oxidized or unstable. Viscosity gel and the benefit are decreased at room temperature after 24-36 hours. This research aims to obtain information about the resistance to oxidation via nitogren gas treatment and antioxidants, as well as the influence of phase changes in an attempt to retain the characteristics of the physicochemical Aloe vera gel over time. This Study can be described a conclusion that the best storage conditions are sound-proofed temperature conditions (4 ± 1)oc. Environmental conditioning by administering nitrogen gas storage and antioxidant Buthylated Hydroxytoluene (BHT) 750 ppm for 4 weeks defending the nature physicochemical Aloe vera gel. Freeze drying process of Aloe vera gel that has filled gum Arabic 3 % generates a more homogenous powder and smaller and more.
Mechanism study of endothelial protection and inhibits platelet activa (...)
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg−1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
Health benefits of aloe vera A wonder plant
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important ...
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
The pretreatment of aqueous extract of Aloe vera leaf in rats proved to act as a potential antioxidant which could be implicated toward protection of the integrity of liver of rat against pesticide i...
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and …
Ultrasonic degradation of Persian gum and gum tragacanth effect on chain conformation and molecular properties - ScienceDirect
The present study introduces the ultrasonic modification of two Iranian native gum exudates, Persian gum (PG) and gum tragacanth (GT) for the first ti…
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL−1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300–400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around −30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
httpcmspanel.istanbul.edu.tr8080journalijparticleinvestigation-of-aloe-emodin-and-aloe-vera-gel-extract-on-apoptosis-dependent-pathways-in-leukemia-and-lymphoma-cell-lines
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Seaweeds have received huge interest in recent years given their promising potentialities. Their antioxidant, anti-inflammatory, antitumor, hypolipemic, and anticoagulant effects are among the most renowned and studied bioactivities so far, and these effects have been increasingly associated with their content and richness in both primary and secondary metabolites. Although primary metabolites have a pivotal importance such as their content in polysaccharides (fucoidans, agars, carragenans, ulvans, alginates, and laminarin), recent data have shown that the content in some secondary metabolites largely determines the effective bioactive potential of seaweeds. Among these secondary metabolites, phenolic compounds feature prominently. The present review provides the most remarkable insights into seaweed research, specifically addressing its chemical composition, phytopharmacology, and cosmetic applications.
Neuroprotective effect of fucoidan from Turbinaria decurrens in MPTP i (...)
Fucoidan is one of the dominant sulfated polysaccharide which was extracted from the brown seaweed Turbinaria decurrens. In the behavioral study mice …
httpnfsr.sbmu.ac.irfilessite1user_files_e3fcdealihoseini_57-A-10-681-1-4da636e.pdf
Novel fucoidan based bioactive targeted nanoparticles from Undaria Pinnatifida for treatment of pancreatic cancer - ScienceDirect
Fucoidan is a marine polymer extracted from diverse types of brown algae. This polysaccharide showed great potential towards treatment of different ty…