Has goal directed fluid therapy and glycocalyx a role in enhanced reco (...)
0 Glyconutrients
Marine Drugs Free Full-Text Induction of p53-Independent Apoptosis a (...)
It is well known that fucoidan, a natural sulfated polysaccharide present in various brown algae, mediates anticancer effects through the induction of cell cycle arrest and apoptosis. Nevertheless, the role of tumor suppressor p53 in the mechanism action of fucoidan remains unclear. Here, we investigated the anticancer effect of fucoidan on two p53 isogenic HCT116 (p53+/+ and p53−/−) cell lines. Our results showed that inhibition of cell viability, induction of apoptosis and DNA damage by treatment with fucoidan were similar in two cell lines. Flow cytometric analysis revealed that fucoidan resulted in G1 arrest in the cell cycle progression, which correlated with the inhibition of phosphorylation of retinoblastoma protein (pRB) and concomitant association of pRB with the transcription factor E2Fs. Furthermore, treatment with fucoidan obviously upregulated the expression of cyclin-dependent kinase (CDK) inhibitors, such as p21WAF1/CIP1 and p27KIP1, which was paralleled by an enhanced binding with CDK2 and CDK4. These events also commonly occurred in both cell lines, suggesting that fucoidan triggered G1 arrest and apoptosis in HCT116 cells by a p53-independent mechanism. Thus, given that most tumors exhibit functional p53 inactivation, fucoidan could be a possible therapeutic option for cancer treatment regardless of the p53 status.
Evaluation of the Treatment Effect of Aloe vera Fermentation in Burn Injury Healing Using a Rat Model
Burn injury is a growing medical problem associated with public health, and few effective agents are available for treatment of this disease. In the present study, a burn injury rat model was developed and the accelerated effect of Aloe vera fermentation on burn injury healing was evaluated. Our results indicated that Aloe vera fermentation could markedly reduce the DPPH (56.12%), O2⋅− (93.5%), ⋅OH (76.12%), Fe2+ chelation (82%), and oxygen-reduction activity (0.28 μg/ml) and significantly inhibited the growth of pathogens S. typhimurium ATCC 13311 (inhibition zone diameter: 14 mm), S. enteritidis ATCC13076 (IZD: 13 mm), S. flexneri ATCC 12022 (IZD: 18 mm), E. coli 44102 (IZD: 10 mm), L. monocytogenes ATCC 19111 (IZD: 18 mm), S. dysenteriae 301 (IZD: 20 mm), S. aureus COWAN1 (IZD: 19 mm), and P. acnes ATCC 11827 (IZD: 25 mm) in vitro. The in vivo results indicated that Aloe vera fermentation produced more eosinophils and fibroblasts and less vessel proliferation compared with the model group on the 14th day, which had greatly accelerated burn injury healing via shedding of the scab and promoting hair growth. ELISA results indicated that Aloe vera fermentation had significantly reduced the production of proinflammatory factors TNF-α and IL-1β () and greatly enhanced the yield of anti-inflammatory factor IL-4 in animal serum (). In addition, the high-throughput sequencing results indicated that Aloe vera fermentation obviously increased the percentage of Firmicutes (65.86% vs. 49.76%), while reducing the number of Bacteroidetes (27.60% vs. 45.15%) compared with the M group at the phylum level. At the genus level, Aloe vera fermentation increased the probiotic bacteria Lactobacillus (3.13% vs. 2.09%) and reduced the pathogens Prevotella (10.60% vs.18.24%) and Blautia (2.91% vs. 16.41%) compared with the M group. Therefore, we concluded that the use of Aloe vera fermentation significantly accelerates burn injury healing via reduction of the severity of inflammation and through modification of gut microbiota.
Marine Drugs Free Full-Text Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida Therapy in Prostate Cancer Cell
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (
Inhibitory Effects of Trehalose on Malignant Melanoma Cell Growth Impl (...)
Purpose. To investigate the inhibitory effects of trehalose on malignant melanoma cell growth. Methods. We cultured human malignant melanoma cells in a medium containing trehalose (control/2.5%/5.0%/7.5%/10.0%) and used the MTT assay to evaluate the growth activities. Subsequently, trehalose was topically instilled on subconjunctivally inoculated melanoma cells in F334/NJcl-rmu/rmu rats, followed by a histopathological evaluation of tumor growth. Using flow cytometry, we compared the distribution of the cell cycle, rate of apoptotic cells, and intracellular factors related to the cell cycle in cultured melanoma cells after trehalose treatment. Results. The MTT study showed that proliferation of melanoma cells was significantly inhibited by ≧ 5% of trehalose concentrations in the culture media. Subconjunctivally inoculated melanoma cell masses were significantly smaller in eyes administered trehalose as compared to controls. Flow cytometry analyses demonstrated that the trehalose groups had increased rates of G2/M phase cells and apoptotic cells in the cell culture. These cells also exhibited increased expressions of cell-cycle inhibitory factors. Conclusions. The current results show trehalose inhibits malignant melanoma cell growth by inducing G2/M cell cycle arrest and apoptosis, suggesting trehalose as a potential candidate for a topical agent to inhibit proliferation of malignant tumor cells of the ocular surface.
Marine Drugs Free Full-Text Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study
Fucoidans are a class of fucose-rich sulfated polysaccharides derived from brown macroalgae that exert a range of biological activities in vitro and in vivo. To generate an unbiased assessment of pathways and processes affected by fucoidan, a placebo-controlled double-blind pilot study was performed in healthy volunteers. Blood samples were taken immediately before and 24 h after ingestion of a single dose of 1 g of Undaria pinnatifida fucoidan (UPF) or placebo. Levels of isolated miRNAs were analyzed using Taqman Open Array Human MicroRNA panels. Out of 754 miRNAs screened, UPF affected a total of 53 miRNAs. Pathway analysis using the TALOS data analysis tool predicted 29 different pathways and processes that were largely grouped into cell surface receptor signaling, cancer-related pathways, the majority of which were previously associated with fucoidans. However, this analysis also identified nine pathways and processes that have not been associated with fucoidans before. Overall, this study illustrates that even a single dose of fucoidans has the potential to affect the expression of genes related to fundamental cellular processes. Moreover, it confirms previous data that fucoidans influence immunity, cancer cells, inflammation, and neurological function.
Expanding Our View of the Human Microbiome NIH Director's Blog
Many people still regard bacteria and other microbes just as disease-causing germs. But it’s a lot more complicated than that. In fact, it’s become increasingly clear that the healthy human body is…
Marine Drugs Free Full-Text Oral Fucoidan Attenuates Lung Pathology and Clinical Signs in a Severe Influenza A Mouse Model
Fucoidans are known to be effective inhibitors of inflammation, and of virus binding and cellular entry. Undaria pinnatifida-derived fucoidan (UPF) was assessed in a severe influenza A (H1N1, PR8) infection model in mice. Initially, UPF was gavaged at 3.52 mg daily in a treatment model. Gross lung pathology (consolidation) was significantly reduced as compared to controls. UPF was then presented as a feed supplement at a rate of either nil, 3.52 mg/day or 7.04 mg/day in a prophylactic model, dosed three days before infection. A significant improvement was observed in the clinical signs of ill-health, as well as a reduction in gross lung pathology in animals treated with the higher dose, although there was no significant reduction in lung viral titres.
The endothelial glycocalyx composition, functions, and visualization
This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both ...
Marine Drugs Free Full-Text Pharmacokinetic and Tissue Distribution of Fucoidan from Fucus vesiculosus after Oral Administration to Rats HTML
Fucus vesiculosus L., known as bladderwrack, belongs to the brown seaweeds, which are widely distributed throughout northern Russia, Atlantic shores of Europe, the Baltic Sea, Greenland, the Azores, the Canary Islands, and shores of the Pacific Ocean. Fucoidan is a major fucose-rich sulfated polysaccharide found in Fucus (F.) vesiculosus. The pharmacokinetic profiling of active compounds is essential for drug development and approval. The aim of the study was to evaluate the pharmacokinetics and tissue distribution of fucoidan in rats after a single-dose oral administration. Fucoidan was isolated from F. vesiculosus. The method of measuring anti-activated factor X (anti-Xa) activity by amidolytic assay was used to analyze the plasma and tissue concentrations of fucoidan. The tissue distribution of fucoidan after intragastric administration to the rats was characterized, and it exhibited considerable heterogeneity. Fucoidan preferentially accumulates in the kidneys (AUC0–t = 10.74 µg·h/g; Cmax = 1.23 µg/g after 5 h), spleen (AUC0–t = 6.89 µg·h/g; Cmax = 0.78 µg/g after 3 h), and liver (AUC0–t = 3.26 µg·h/g; Cmax = 0.53 µg/g after 2 h) and shows a relatively long absorption time and extended circulation in the blood, with a mean residence time (MRT) = 6.79 h. The outcome of this study provides additional scientific data for traditional use of fucoidan-containing plants and offers tangible support for the continued development of new effective pharmaceuticals using fucoidan.
Experts cool concerns over FDA Aloe vera carcinogenicity study
The safety of Aloe vera is solid despite a recent FDA analysis reporting ‘clear evidence of carcinogenicity’ since the FDA scientists studied aloe that is ‘completely different than many aloe vera products on the market’, say experts.
Marine Drugs Free Full-Text Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication—Potential Implication of Sirtuins
Increased interest in natural antioxidants has brought to light the fucoidans (sulfated polysaccharides present in brown marine algae) as highly valued nutrients as well as effective and safe therapeutics against several diseases. Based on their satisfactory in vitro antioxidant potency, researchers have identified this molecule as an efficient remedy for neuropathological as well as metabolic disorders. Some of this therapeutic activity is accomplished by upregulation of cytoprotective molecular pathways capable of restoring the enzymatic antioxidant activity and normal mitochondrial functions. Sirtuin-3 has been discovered as a key player for achieving the neuroprotective role of fucoidan by managing these pathways, whose ultimate goal is retrieving the entirety of the antioxidant response and preventing apoptosis of neurons, thereby averting neurodegeneration and brain injuries. Another pathway whereby fucoidan exerts neuroprotective capabilities is by interactions with P-selectin on endothelial cells, thereby preventing macrophages from entering the brain proper. Furthermore, beneficial influences of fucoidan have been established in hepatocytes after xenobiotic induced liver injury by decreasing transaminase leakage and autophagy as well as obtaining optimal levels of intracellular fiber, which ultimately prevents fibrosis. The hepatoprotective role of this marine polysaccharide also includes a sirtuin, namely sirtuin-1 overexpression, which alleviates obesity and insulin resistance through suppression of hyperglycemia, reducing inflammation and stimulation of enzymatic antioxidant response. While fucoidan is very effective in animal models for brain injury and neuronal degeneration, in general, it is accepted that fucoidan shows somewhat limited potency in liver. Thus far, it has been used in large doses for treatment of acute liver injuries. Thus, it appears that further optimization of fucoidan derivatives may establish enhanced versatility for treatments of various disorders, in addition to brain injury and disease.
Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. - PubMed - NCBI
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates a cluster of oxidative stress-inducible genes in cells. Here, we aimed to investigate whether trehalose (Tre) protects primary rat proximal tubular (rPT) cells against cadmium (Cd)-induced oxidative stress vi …
Marine Drugs Free Full-Text Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice
This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.
Gastrointestinal Region Specific Insulin Permeation Enhancement b... Ingenta Connect
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Alzheimer’s disease (AD) is a chronic neurodegenerative disease which contributes to memory loss and cognitive decline in the elderly. Fucoidan, extracted from brown algae, is a complex sulfated polysaccharide and potential bioactive compound. In this study, we investigated whether fucoidan protects PC12 cells from apoptosis induced by a combination of beta-amyloid 25–35 (Aβ25–35) and d-galactose (d-Gal), and improves learning and memory impairment in AD model mice. The results indicated that fucoidan could inhibit the release of cytochrome c from the mitochondria to cytosol and activation of caspases, and increase the expression of apoptosis inhibitor proteins (IAPs), including livin and X-linked IAP (XIAP) in PC12 cells damaged by Aβ25–35 and d-Gal-induction. Fucoidan reversed the decreased activity of acetylcholine (ACh) and choline acetyl transferase (ChAT), as well as the increased activity of acetylcholine esterase (AChE), in AD model mice induced by infusion of d-Gal. Furthermore, fucoidan improved antioxidant activity in vitro and in vivo by activation of superoxide dismutase (SOD) and glutathione (GSH). These results suggested that fucoidan could protect PC12 cells from apoptosis and ameliorate the learning and memory impairment in AD model mice, which appeared to be due to regulating the cholinergic system, reducing oxidative stress, and inhibiting the caspase-dependent apoptosis pathway.
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
Gel aloe vera reduces MMP-9 in diabetic wounds
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF) has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.
Agriculture Free Full-Text Monitoring of Pesticides in the Cultivation of Nopal Vegetable (Opuntia ficus-indica (L.)) Mill, Morelos, México
The presence of pesticide residues in vegetable and fruit products, as a consequence of inappropriate application in some cases, constitutes a risk to the health of the exposed population. In Mexico, the official norm, NOM-003-STPS-1999, only allows the use of pesticides with the phytosanitary registry, the responsible state commission for the control of the process and use of pesticides and toxic substances, which recommends doses and permitted crops. Despite the above, it is still common to find pesticide residues in some vegetable products. In this study, the following were detected: Chlorpyriphos, Dimetomorph I, Malathion, Omethoate, Carbendazim, and Imidacloprid in Nopal. The study was carried out in two collection centers located in the state of Morelos. In total, sixty samples were taken, thirty for each collection center, for a period of 10 months. To determine the pesticide residues, the analytical methodology was used, according to the guide, SANTE/11945/2015; in a laboratory accredited by the Mexican Accreditation Entity A. C. in the norm, NMX-EC-17025-IMNC-2006. The procedure for extracting analytes was carried out using the method, QuEChERS. The highest concentration of the pesticides detected in the samples obtained from the non-Certified Supply Center were Chlorpyrifos 0.309 mg/kg (MRL 0.01), Dimetomorf I 0.029 mg/kg (MRL 0.01), Malathion 0.155 mg/kg (MRL 0.01), Omethoate 0.032 (MRL 0.01), Carbendazim 0.090 mg/kg (MRL 0.01), and Imidacloprid 0.058 mg/kg (MRL 0.01). Thirty percent of the samples analyzed showed pesticide residues; the most frequent were Carbendazim. The results for the estimated daily intake (EDI) oscillated between 6.5 × 10−5 and 1.3 × 10−4 mg/kg body weight for the vegetable, Nopal. In principle, it could be concluded that the consumption of Nopal with pesticide residues does not represent any toxicological risk for human health, however, the risk cannot be ruled out due to the intake of other vegetables and fruits that are cultivated in the Mexican Republic, which probably present pesticide residues, which together would raise potential risks to human health.
Marine Polysaccharides in Pharmaceutical Applications Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field - Google Search
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Aloe vera gel is a potential material as raw material industry, this is because a very complex composition. However Aloe vera gel is very easily oxidized or unstable. Viscosity gel and the benefit are decreased at room temperature after 24-36 hours. This research aims to obtain information about the resistance to oxidation via nitogren gas treatment and antioxidants, as well as the influence of phase changes in an attempt to retain the characteristics of the physicochemical Aloe vera gel over time. This Study can be described a conclusion that the best storage conditions are sound-proofed temperature conditions (4 ± 1)oc. Environmental conditioning by administering nitrogen gas storage and antioxidant Buthylated Hydroxytoluene (BHT) 750 ppm for 4 weeks defending the nature physicochemical Aloe vera gel. Freeze drying process of Aloe vera gel that has filled gum Arabic 3 % generates a more homogenous powder and smaller and more.
Mechanism study of endothelial protection and inhibits platelet activa (...)
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg−1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
Health benefits of aloe vera A wonder plant
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important ...
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
The pretreatment of aqueous extract of Aloe vera leaf in rats proved to act as a potential antioxidant which could be implicated toward protection of the integrity of liver of rat against pesticide i...
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and …
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL−1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300–400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around −30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.