0 Glyconutrients

1652 bookmarks
Newest
Marine Drugs Free Full-Text Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice
Marine Drugs Free Full-Text Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice
This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.
·mdpi.com·
Marine Drugs Free Full-Text Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Alzheimer’s disease (AD) is a chronic neurodegenerative disease which contributes to memory loss and cognitive decline in the elderly. Fucoidan, extracted from brown algae, is a complex sulfated polysaccharide and potential bioactive compound. In this study, we investigated whether fucoidan protects PC12 cells from apoptosis induced by a combination of beta-amyloid 25–35 (Aβ25–35) and d-galactose (d-Gal), and improves learning and memory impairment in AD model mice. The results indicated that fucoidan could inhibit the release of cytochrome c from the mitochondria to cytosol and activation of caspases, and increase the expression of apoptosis inhibitor proteins (IAPs), including livin and X-linked IAP (XIAP) in PC12 cells damaged by Aβ25–35 and d-Gal-induction. Fucoidan reversed the decreased activity of acetylcholine (ACh) and choline acetyl transferase (ChAT), as well as the increased activity of acetylcholine esterase (AChE), in AD model mice induced by infusion of d-Gal. Furthermore, fucoidan improved antioxidant activity in vitro and in vivo by activation of superoxide dismutase (SOD) and glutathione (GSH). These results suggested that fucoidan could protect PC12 cells from apoptosis and ameliorate the learning and memory impairment in AD model mice, which appeared to be due to regulating the cholinergic system, reducing oxidative stress, and inhibiting the caspase-dependent apoptosis pathway.
·mdpi.com·
Marine Drugs Free Full-Text Protective Effects of Fucoidan on Aß25–3 (...)
Intravenous Trehalose Improves Dysphagia and Muscle Function in Oculop (...)
Intravenous Trehalose Improves Dysphagia and Muscle Function in Oculop (...)
Objective: To assess the safety and efficacy of weekly IV administration of Cabaletta (trehalose 9\[percnt] solution) in OPMD after a 24 week open label phase 2 trial. Background: Trehalose showed efficacy in reducing PABPN1 muscle aggregation and improving muscle function in a transgenic OPMD mouse model. Methods:25 genetically-confirmed OPMD patients received weekly infusion of 300 cc Cabaletta. Swallowing, muscle power and functional tests, and swallowing quality of life report (SWAL-QOL) were assessed at baseline and after 24 weeks. Results: No serious drug-related adverse effects were noted. Time to swallow 80cc cold water (an OPMD validated dysphagia test) improved by 35.3[percnt\] (p
·neurology.org·
Intravenous Trehalose Improves Dysphagia and Muscle Function in Oculop (...)
Improving drought tolerance of quinoa plant by foliar treatment of trehalose Dawood Agricultural Engineering International CIGR Journal
Improving drought tolerance of quinoa plant by foliar treatment of trehalose Dawood Agricultural Engineering International CIGR Journal
Two field experiments were conducted during two successive seasons (2014/2015 and 2015/2016) at the Experimental Station of National Research Centre, Nubaria district, Beheira Governorate, Egypt, to study the effect of foliar treatment of quinoa plants with trehalose (Tre) (100µM and 500µM) on growth, photosynthetic pigments, seed yield quantity & quality, in fever of nutritional and antioxidant compounds in the yielded quinoa seeds which subjected to water deficiency (skipping two irrigation times at 50 & 60 days after sowing). Water deficiency caused marked decreases in quinoa plant growth parameters (shoot height, fresh and dry weights of shoot/plant) and photosynthetic pigments with marked increases in root growth parameters (root length, fresh and dry weight of root/plant). Drought stress decreased yield and yield attributes, carbohydrates, protein, nitrogen, phosphorous and potassium contents.  Meanwhile oil percentage, phenolic and flavonoids contents increased by drought stress. Antioxidant activity at 50 and 100µg/l showed significant increases in response to drought stress. On the other hand, Tre treatments proved to be effective in enhancing growth parameters and photosynthetic pigments of drought stressed plants. Trehalose treatments at different levels caused marked increases in yield and yield attributes, carbohydrate, protein, oil, nitrogen, phosphorous, potassium, total phenolic, flavonoids contents, and antioxidant activity of the yielded seeds either in non stressed or drought stressed plants relative to corresponding controls. Generally, 500 µM Tre was the most pronounced and effective treatment in alleviating the deleterious effect of drought stress on quinoa plants.
·cigrjournal.org·
Improving drought tolerance of quinoa plant by foliar treatment of trehalose Dawood Agricultural Engineering International CIGR Journal
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
·mdpi.com·
Marine Drugs Free Full-Text The Therapeutic Potential of the Anticancer Activity of Fucoidan Current Advances and Hurdles
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF) has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.
·mdpi.com·
Marine Drugs Free Full-Text Toxicological Evaluation of Low Molecula (...)
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Aloe vera gel is a potential material as raw material industry, this is because a very complex composition. However Aloe vera gel is very easily oxidized or unstable. Viscosity gel and the benefit are decreased at room temperature after 24-36 hours. This research aims to obtain information about the resistance to oxidation via nitogren gas treatment and antioxidants, as well as the influence of phase changes in an attempt to retain the characteristics of the physicochemical Aloe vera gel over time. This Study can be described a conclusion that the best storage conditions are sound-proofed temperature conditions (4 ± 1)oc. Environmental conditioning by administering nitrogen gas storage and antioxidant Buthylated Hydroxytoluene (BHT) 750 ppm for 4 weeks defending the nature physicochemical Aloe vera gel. Freeze drying process of Aloe vera gel that has filled gum Arabic 3 % generates a more homogenous powder and smaller and more.
·repository.warmadewa.ac.id·
Gum Acacia and Studies the Resistance to Oxidation and the Changes Phases against the Characteristics of Physicochemical Aloe vera Gel
Mechanism study of endothelial protection and inhibits platelet activa (...)
Mechanism study of endothelial protection and inhibits platelet activa (...)
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg−1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
·link.springer.com·
Mechanism study of endothelial protection and inhibits platelet activa (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
·link.springer.com·
Melanogenesis inhibitory effect of low molecular weight fucoidan from (...)
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
In this study, fucoidans with different molecular weight that were isolated from the brown alga Undaria pinnatifida (Phaeophyceae, Laminariales) were investigated for their ability to inhibit melanogenesis and scavenge superoxide and hydroxyl radicals. Fucoidan samples with low molecular weights of 89, 35, 17, and 6 kDa were prepared by radiation-degradation of a 378 kDa fucoidan isolated from U. pinnatifida. The inhibitory activity of fucoidan against melanin biosynthesis in B16BL6 melanoma cells was enhanced for low molecular weight samples. To investigate the increase in melanogenesis inhibition exhibited by the low molecular weight fucoidan, tyrosinase inhibition activity and radical scavenging activities were measured. There was an increase in the tyrosinase inhibition activity for low molecular weight samples. Additionally, the radical scavenging activity was increased for lower molecular weight fucoidans. These results suggest that low molecular weight fucoidans from seaweeds may have beneficial biological properties.
·link.springer.com·
Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida SpringerLink
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important ...
·onlinelibrary.wiley.com·
Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases - Sun - - Journal of the Science of Food and Agriculture - Wiley Online Library
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
The pretreatment of aqueous extract of Aloe vera leaf in rats proved to act as a potential antioxidant which could be implicated toward protection of the integrity of liver of rat against pesticide i...
·onlinelibrary.wiley.com·
Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats - Gupta - - Journal of Cellular Physiology - Wiley Online Library
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and …
·pubmed.ncbi.nlm.nih.gov·
Molecular Targets and Related Biologic Activities of Fucoidan A Review - PubMed
IJMS Free Full-Text The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice
IJMS Free Full-Text The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice
Atherosclerosis and nonalcoholic fatty liver disease (NAFLD) are frequent causes of death in the Western countries. Recently, it has been shown that autophagy dysfunction plays an important role in the pathogenesis of both atherosclerosis and NAFLD; thus, activators of autophagy might be useful for novel therapeutic interventions. Trehalose—a naturally occuring disaccharide present in plants, bacteria, fungi, insects, and certain types of shrimps—is a known inducer of autophagy. However, according to the literature, its anti-atherosclerotic and anti-steatotic potential seem to depend on the experimental setting. The aim of our study was to comprehensively describe the influence of a prolonged treatment with orally administered trehalose on the development of atherosclerotic lesions and hepatic steatosis in apolipoprotein E knockout (apoE−/−) mice in an experimental set up reflecting both moderate and severe proatherogenic conditions: male apoE−/− mice on a chow diet (CD) and female apoE−/− mice fed with a high-fat diet (HFD). We found that exogenous trehalose inhibited atherosclerosis and attenuated hepatic steatosis in apoE−/− mice. Such effects of trehalose were not associated with changes of plasma cholesterol, low-density lipoproteins (LDL), or high-density lipoproteins (HDL). Moreover, the anti-steatotic action of trehalose in the liver was associated with the induction of autophagy. The exact molecular mechanisms of both the anti-atherosclerotic action of trehalose and its inhibitory effect on liver steatosis require further clarification.
·mdpi.com·
IJMS Free Full-Text The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL−1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300–400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around −30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
·mdpi.com·
Molecules Free Full-Text Application of pH-Responsive FucoidanChitosan Nanoparticles to Improve Oral Quercetin Delivery
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Seaweeds have received huge interest in recent years given their promising potentialities. Their antioxidant, anti-inflammatory, antitumor, hypolipemic, and anticoagulant effects are among the most renowned and studied bioactivities so far, and these effects have been increasingly associated with their content and richness in both primary and secondary metabolites. Although primary metabolites have a pivotal importance such as their content in polysaccharides (fucoidans, agars, carragenans, ulvans, alginates, and laminarin), recent data have shown that the content in some secondary metabolites largely determines the effective bioactive potential of seaweeds. Among these secondary metabolites, phenolic compounds feature prominently. The present review provides the most remarkable insights into seaweed research, specifically addressing its chemical composition, phytopharmacology, and cosmetic applications.
·mdpi.com·
Molecules Free Full-Text Current Trends on Seaweeds Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications HTML
Nutrients Free Full-Text Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle In Vitro and In Vivo Model HTML
Nutrients Free Full-Text Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle In Vitro and In Vivo Model HTML
Laminaria japonica (LJ) and Hizikia fusiforme (HF) are brown seaweeds known to have various health-promoting effects. In this study, we investigated the anti-diabetic effects and possible mechanism(s) of LJ and HF by using both in vitro and in vivo models. C2C12 myotubes, mouse-derived skeletal muscle cells, treated with LF or HF extracts were used for the in vitro model, and muscle tissues from C57BL/6N mice fed a high-fat diet supplemented with 5% LF or HF for 16 weeks were used for the in vivo model. Although both the LF and HF extracts significantly inhibited α-glucosidase activity in a dose-dependent manner, the HF extract had a superior α-glucosidase inhibition than the LF extract. In addition, glucose uptake was significantly increased by LJ- and HF-treated groups when compared to the control group. Phosphorylation of protein kinase B and AMP-activated protein kinase was induced by LJ and HF in both the vivo and in vitro skeletal muscle models. Furthermore, LJ and HF significantly decreased tumor necrosis factor-α whereas both extracts increased interleukin (IL)-6 and IL-10 production in lipopolysaccharide-stimulated C2C12 myotubes. Taken together, these findings imply that the brown seaweeds LJ and HF could be useful therapeutic agents to attenuate muscle insulin resistance due to diet-induced obesity and its associated inflammation.
·mdpi.com·
Nutrients Free Full-Text Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle In Vitro and In Vivo Model HTML
Nutrients Free Full-Text Oligo-Fucoidan Improves Diabetes-Induced Renal Fibrosis via Activation of Sirt-1, GLP-1R, and Nrf2HO-1 An In Vitro and In Vivo Study HTML
Nutrients Free Full-Text Oligo-Fucoidan Improves Diabetes-Induced Renal Fibrosis via Activation of Sirt-1, GLP-1R, and Nrf2HO-1 An In Vitro and In Vivo Study HTML
Fucoidan extracted from brown algae has multiple beneficial functions. In this study, we investigated the effects of low-molecular-weight fucoidan (oligo-FO) on renal fibrosis under in vitro and in vivo diabetic conditions, and its molecular mechanisms. Advanced glycation product (AGE)-stimulated rat renal proximal tubular epithelial cells (NRK-52E) and diabetic mice induced by high-fat diet and intraperitoneal injection of streptozotocin and nicotinamide were used. Oligo-FO treatment significantly inhibited anti-high mobility group box 1 (HMGB1)/RAGE/ anti-nuclear factor-kappa B (NF-κB)/transforming growth factor-β1 (TGF-β1)/TGF-β1R/Smad 2/3/fibronectin signaling pathway and HIF-1α activation in AGE-stimulated NRK-52E cells. Conversely, the expression and activity of Sirt-1; the levels of ubiquitin-specific peptidase 22 (USP22), p-AMPK, glucagon-like peptide-1 receptor (GLP-1R), and heme oxygenase-1 (HO-1); and Nrf2 activation were remarkably increased by oligo-FO in AGE-stimulated cells. However, the above effects of oligo-FO were greatly diminished by inhibiting Sirt-1, HO-1, or GLP-1R activity. Similar changes of these pro-fibrotic genes in the kidney and a marked attenuation of renal injury and dysfunction were observed in oligo-FO-treated diabetic mice. These findings indicated that the inhibitory effects of the oligo-FO on diabetes-evoked renal fibrosis are mediated by suppressing TGF-β1-activated pro-fibrogenic processes via Sirt-1, HO-1, and GLP-1R dependence. Collectively, fucoidan-containing foods or supplements may be potential agents for ameliorating renal diseases due to excessive fibrosis.
·mdpi.com·
Nutrients Free Full-Text Oligo-Fucoidan Improves Diabetes-Induced Renal Fibrosis via Activation of Sirt-1, GLP-1R, and Nrf2HO-1 An In Vitro and In Vivo Study HTML