Found 104 bookmarks
Newest
Documenting functions
Documenting functions
The basics of roxygen2 tags and how to use them for documenting functions.
Examples @examples provides executable R code showing how to use the function in practice. This is a very important part of the documentation because many people look at the examples before reading anything. Example code must work without errors as it is run automatically as part of R CMD check. For the purpose of illustration, it’s often useful to include code that causes an error. You can do this by wrapping the code in try() or using \dontrun{} to exclude from the executed example code. For finer control, you can use @examplesIf: #' @examplesIf interactive() #' browseURL("https://roxygen2.r-lib.org")
Instead of including examples directly in the documentation, you can put them in separate files and use @example path/relative/to/package/root to insert them into the documentation. All functions must have examples for initial CRAN submission.
·roxygen2.r-lib.org·
Documenting functions
Prompt and empower your LLM, the tidy way
Prompt and empower your LLM, the tidy way
The tidyprompt package allows users to prompt and empower their large language models (LLMs) in a tidy way. It provides a framework to construct LLM prompts using tidyverse-inspired piping syntax, with a library of pre-built prompt wrappers and the option to build custom ones. Additionally, it supports structured LLM output extraction and validation, with automatic feedback and retries if necessary. Moreover, it enables specific LLM reasoning modes, autonomous R function calling for LLMs, and compatibility with any LLM provider.
·tjarkvandemerwe.github.io·
Prompt and empower your LLM, the tidy way
Explore Your Data Interactively • ExPanDaR
Explore Your Data Interactively • ExPanDaR
Provides a shiny-based front end (the 'ExPanD' app) and a set of functions for exploratory data analysis. Run as a web-based app, 'ExPanD' enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of 'ExPanD' and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use 'ExPanD' and/or the functions of this package.
·joachim-gassen.github.io·
Explore Your Data Interactively • ExPanDaR
CRAN - Package shinydlplot
CRAN - Package shinydlplot
Add a download button to a 'shiny' plot or 'plotly' that appears when the plot is hovered. A tooltip, styled to resemble 'plotly' buttons, is displayed on hover of the download button. The download button can be used to allow users to download the dataset used for a plot.
·cran.r-project.org·
CRAN - Package shinydlplot