Turn your analyses into high quality documents, reports, presentations and dashboards with R Markdown. Use a productive notebook interface to weave together narrative text and code to produce elegantly formatted output. Use multiple languages including R, Python, and SQL. R Markdown supports a reproducible workflow for dozens of static and dynamic output formats including HTML, PDF, MS Word, Beamer, HTML5 slides, Tufte-style handouts, books, dashboards, shiny applications, scientific articles, websites, and more.
Provides a shiny-based front end (the 'ExPanD' app) and a set of functions for exploratory data analysis. Run as a web-based app, 'ExPanD' enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of 'ExPanD' and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use 'ExPanD' and/or the functions of this package.
Add a download button to a 'shiny' plot or 'plotly' that appears when the plot is hovered. A tooltip, styled to resemble 'plotly' buttons, is displayed on hover of the download button. The download button can be used to allow users to download the dataset used for a plot.
I was my great pleasure yesterday to be a presenter in the "Why R Webinar" series, on the topic R at Microsoft. In the talk (which you can watch below) I recounted the history of Microsoft's acquisition of Revolution Analytics, and the various way the Microsoft supports R: its membership of the R Consortium, integration with many products (including demos of Azure ML Service with GitHub Actions, and Azure Functions), and how Microsoft has driven adoption of R in large organizations by making R "IT approved". Many thanks to the Why R Foundation for hosting the talk, and to everyone...
Going parallel: understanding load balancing in R | Neural Discharge
With most computers now having many cores, parallelising your R code is a great way to reduce processing time, and there are lots of packages to help. But if you benchmark your new code, you may fi…