Found 14 bookmarks
Newest
UNCHARTED DATA: Using Crosstalk to Add User-Interactivity
UNCHARTED DATA: Using Crosstalk to Add User-Interactivity
Linking an interactive plot and table together with the crosstalk package.
Using Crosstalk to Add User-Interactivity
The goal is to link the reactable table I created to a plotly chart and provide additional filter options that control both the table and the chart.
An important note: in order to use crosstalk, you must create a shared dataset and call that dataset within both plotly and reactable. Otherwise, your dataset will not communicate and filter with eachother. The code to do this is SharedData$new(dataset).
If you expand the code below, you’ll see that the code to build a table in reactable is quite extensive. I will not go into the details in this post, but do recommend a couple great tutorials that I used to create the interactive table such as this tutorial from Greg Lin, and this from Tom Mock which really helped me understand how to use CSS and Google fonts to enhance the visual appeal of the table (see the “Additional CSS Used for Table” section below for more info).
If you have ever built something in Shiny before, you’ll notice that the crosstalk filters are very similar. You can add a filter to any existing column in the dataset. As you can see in the code below, I used a mixture of filter_checkbox and filter_select depending on how many unique options were available in the column you’re filtering. My rule of thumb is if there are more than five options to choose from it’s probably better to put them into a list in filter_select like I did with the Division filtering as to not take up too much space on the page.
For the layout of the data visualization, I used bscols to place the crosstalk filters side-by-side with the interactive plotly chart. I then placed the reactable table underneath and added a legend to the table using tags from the htmltools package. The final result is shown below. Feel free to click around and the filters and you will notice that both the plot and the table will filter accordingly. Another option is to drag and click on the plot and you will see the table underneath mimic the teams shown.
·uncharteddata.netlify.app·
UNCHARTED DATA: Using Crosstalk to Add User-Interactivity
Design Patterns in R
Design Patterns in R
Build robust and maintainable software with object-oriented design patterns in R. Design patterns abstract and present in neat, well-defined components and interfaces the experience of many software designers and architects over many years of solving similar problems. These are solutions that have withstood the test of time with respect to re-usability, flexibility, and maintainability. R6P provides abstract base classes with examples for a few known design patterns. The patterns were selected by their applicability to analytic projects in R. Using these patterns in R projects have proven effective in dealing with the complexity that data-driven applications possess.
·tidylab.github.io·
Design Patterns in R
Fast JSON, NDJSON and GeoJSON Parser and Generator
Fast JSON, NDJSON and GeoJSON Parser and Generator
A fast JSON parser, generator and validator which converts JSON, NDJSON (Newline Delimited JSON) and GeoJSON (Geographic JSON) data to/from R objects. The standard R data types are supported (e.g. logical, numeric, integer) with configurable handling of NULL and NA values. Data frames, atomic vectors and lists are all supported as data containers translated to/from JSON. GeoJSON data is read in as simple features objects. This implementation wraps the yyjson C library which is available from .
·coolbutuseless.github.io·
Fast JSON, NDJSON and GeoJSON Parser and Generator
hendrikvanb
hendrikvanb
Working with complex, hierarchically nested JSON data in R can be a bit of a pain. In this post, I illustrate how you can convert JSON data into tidy tibbles with particular emphasis on what I’ve found to be a reasonably good, general approach for converting nested JSON into nested tibbles. I use three illustrative examples of increasing complexity to help highlight some pitfalls and build up the logic underlying the approach before applying it in the context of some real-world rock climbing competition data.
·hendrikvanb.gitlab.io·
hendrikvanb
JSON files & tidy data | The Byrd Lab
JSON files & tidy data | The Byrd Lab
My lab investigates how blood pressure can be treated more effectively. Much of that work involves the painstaking development of new concepts and research methods to move forward the state of the art. For example, our work on urinary extracellular vesicles’ mRNA as an ex vivo assay of the ligand-activated transcription factor activity of mineralocorticoid receptors is challenging, fun, and rewarding. With a lot of work from Andrea Berrido and Pradeep Gunasekaran in my lab, we have been moving the ball forward on several key projects on that front.
·byrdlab.org·
JSON files & tidy data | The Byrd Lab
Pimping your shiny app with a JavaScript library : an example using sweetalert2 – R-Craft
Pimping your shiny app with a JavaScript library : an example using sweetalert2 – R-Craft
You can read the original post in its original format on Rtask website by ThinkR here: Pimping your shiny app with a JavaScript library : an example using sweetalert2 You think that some of the components of {shiny} are not very functional or downright austere? Are you looking to implement some feature in your app but it is not available in the {shiny} toolbox? Take a look at JavaScript! JavaScript is a very popular programming language that is often used to add features to web pages. With HTML and This post is better presented on its original ThinkR website here: Pimping your shiny app with a JavaScript library : an example using sweetalert2
·r-craft.org·
Pimping your shiny app with a JavaScript library : an example using sweetalert2 – R-Craft