Glyconutrients

1586 bookmarks
Newest
D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance
D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance
D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.
·mdpi.com·
D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance
Low molecular weight fucoidan (LMWF) restores diabetic endothelial glycocalyx by targeting Neuraminidase2 (NEU2): a new therapy target in glycocalyx shedding - Li - British Journal of Pharmacology - Wiley Online Library
Low molecular weight fucoidan (LMWF) restores diabetic endothelial glycocalyx by targeting Neuraminidase2 (NEU2): a new therapy target in glycocalyx shedding - Li - British Journal of Pharmacology - Wiley Online Library
Background and Purpose Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for diab...
·bpspubs.onlinelibrary.wiley.com·
Low molecular weight fucoidan (LMWF) restores diabetic endothelial glycocalyx by targeting Neuraminidase2 (NEU2): a new therapy target in glycocalyx shedding - Li - British Journal of Pharmacology - Wiley Online Library
Evaluation of Glycogen Synthase Kinase Pathway for Assessing the Antidepressant-like Effect of Glucosamine as a Radioprotector in Rats: Behavioral and Biochemical Studies - Mai H. Mekkawy, Heba M. Karam, Marwa A. Mohamed, Dina M. Lotfy, 2023
Evaluation of Glycogen Synthase Kinase Pathway for Assessing the Antidepressant-like Effect of Glucosamine as a Radioprotector in Rats: Behavioral and Biochemical Studies - Mai H. Mekkawy, Heba M. Karam, Marwa A. Mohamed, Dina M. Lotfy, 2023
Radiotherapy is a very important tool in the treatment of cancer; nevertheless, its side effects are a hindrance to its use. The present study is designed to ev...
·journals.sagepub.com·
Evaluation of Glycogen Synthase Kinase Pathway for Assessing the Antidepressant-like Effect of Glucosamine as a Radioprotector in Rats: Behavioral and Biochemical Studies - Mai H. Mekkawy, Heba M. Karam, Marwa A. Mohamed, Dina M. Lotfy, 2023
Aloe and its Effects on Cancer: A Narrative Literature Review - PMC
Aloe and its Effects on Cancer: A Narrative Literature Review - PMC
Many years ago, Aloe Vera was cited to have a lot of therapeutic properties including; anti-microbial, anti-viral, anti-cancer, anti-oxidant, anti-inflammatory, skin protection, wound healing, and regulation of blood glucose and cholesterol. However, ...
·ncbi.nlm.nih.gov·
Aloe and its Effects on Cancer: A Narrative Literature Review - PMC
Evaluation of the Nutritional and Metabolic Effects of Aloe vera - Herbal Medicine - NCBI Bookshelf
Evaluation of the Nutritional and Metabolic Effects of Aloe vera - Herbal Medicine - NCBI Bookshelf
Aloe vera has a long history of popular and traditional use. It is used in traditional Indian medicine for constipation, colic, skin diseases, worm infestation, and infections (Heber 2007). It is also used in Trinidad and Tobago for hypertension (Lans 2006) and among Mexican Americans for the treatment of type 2 diabetes mellitus (DM; Coronado et al. 2004). In Chinese medicine, it is often recommended in the treatment of fungal diseases (Heber 2007). In Western society, Aloe vera is one of the few herbal medicines in common usage, and it has found widespread use in the cosmetic, pharmaceutical, and food industries. In the case of health, the therapeutic claims for the topical and oral application of Aloe vera cover a wide range of conditions, but few claims have been the subject of robust clinical investigation. The conditions for which clinical trials of Aloe vera have been conducted include skin conditions, management of burn and wound healing, constipation, DM, and gastrointestinal disorders.
·ncbi.nlm.nih.gov·
Evaluation of the Nutritional and Metabolic Effects of Aloe vera - Herbal Medicine - NCBI Bookshelf
Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease
Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease
Ralstonia solanacearum causes bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in the disaccharide trehalose. Water-stressed plants also accumulate trehalose, which increases drought tolerance via abscisic acid (ABA) signaling. Because R. solanacearum-infected plants suffer reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. We found that R. solanacearum-infected plants differentially expressed drought-associated genes, including those involved in ABA and trehalose metabolism, and had more ABA in xylem sap. Consistent with this, treating tomato roots with ABA reduced both stomatal conductance and stem colonization by R. solanacearum. Treating roots with trehalose increased xylem sap ABA and reduced plant water use by lowering stomatal conductance and temporarily improving water use efficiency. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent tomato defense genes; increased xylem sap levels of SA and other antimicrobial compounds; and increased bacterial wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Finally, trehalose-treated plants were substantially more resistant to bacterial wilt disease. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic disease resistance, possibly through a Damage Associated Molecular Pattern (DAMP) response pathway. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggested that R. solanacearum-infected plants increase trehalose to improve water use efficiency and increase wilt disease resistance. The pathogen may degrade trehalose to counter these efforts. Together, these results suggest that treating tomatoes with exogenous trehalose could be a practical strategy for bacterial wilt management.
·journals.plos.org·
Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease
Fucoidan Induces Cancer Cell Apoptosis by Modulating the Endoplasmic R (...)
Fucoidan Induces Cancer Cell Apoptosis by Modulating the Endoplasmic R (...)
Background Cancer metastasis is the main cause leading to disease recurrence and high mortality in cancer patients. Therefore, inhibiting metastasis process or killing metastatic cancer cells by inducing apoptosis is of clinical importance in improving cancer patient survival. Previous studies revealed that fucoidan, a fucose-rich polysaccharide isolated from marine brown alga, is a promising natural product with significant anti-cancer activity. However, little is known about the role of endoplasmic reticulum (ER) stress in fucoidan-induced cell apoptosis. Principal Findings We reported that fucoidan treatment inhibits cell growth and induces apoptosis in cancer cells. Fucoidan treatments resulted in down-regulation of the glucose regulated protein 78 (GRP78) in the metastatic MDA-MB-231 breast cancer cells, and of the ER protein 29 (ERp29) in the metastatic HCT116 colon cancer cells. However, fucoidan treatment promoted ER Ca2+-dependent calmodulin-dependent kinase II (CaMKII) phosphorylation, Bcl-associated X protein (Bax) and caspase 12 expression in MDA-MB-231 cells, but not in HCT116 cells. In both types of cancer cells, fucoidan activated the phosphorylation of eukaryotic initiation factor 2 alpha (p-eIF2α)\CCAAT/enhancer binding protein homologous protein (CHOP) pro-apoptotic cascade and inhibited the phosphorylation of inositol-requiring kinase 1 (p-IRE-1)\X-box binding proteins 1 splicing (XBP-1s) pro-survival cascade. Furthermore, CHOP knockdown prevented DNA damage and cell death induced by fucoidan. Conclusion/Significance Fucoidan exerts its anti-tumor function by modulating ER stress cascades. Contribution of ER stress to the fucoidan-induced cell apoptosis augments our understanding of the molecular mechanisms underlying its anti-tumour activity and provides evidence for the therapeutic application of fucoidan in cancer.
·journals.plos.org·
Fucoidan Induces Cancer Cell Apoptosis by Modulating the Endoplasmic R (...)
PLOS ONE Glucosamine Downregulates the IL-1ß-Induced Expression of Pro (...)
PLOS ONE Glucosamine Downregulates the IL-1ß-Induced Expression of Pro (...)
Osteoarthritis (OA) is one of the major joint diseases, and the synovial inflammation is involved in the pathogenesis and progression of OA. Glucosamine (GlcN) is widely used as a dietary supplement for OA, and is expected to exert the antiinflammatory action in OA. However, the detailed mechanism for the antiinflammatory action of GlcN remains poorly understood. In this study, to elucidate the molecular mechanism involved in the GlcN-medicated regulation of synovial cell activation, we comprehensively analyzed the effect of GlcN on the gene expression using a human synovial cell line MH7A by DNA microarray. The results indicated that GlcN significantly downregulates the expression of 187 genes (≤1/1.5-fold) and upregulates the expression of 194 genes (≥1.5-fold) in IL-1β-stimulated MH7A cells. Interestingly, pathway analysis indicated that among the 10 pathways into which the GlcN-regulated genes are categorized, the 4 pathways are immune-related. Furthermore, GlcN suppressed the expression of proinflammatory cytokine genes (such as IL-6, IL-8, IL-24 and TNF-α genes). In addition, GlcN-mediated O-GlcNAc modification was involved in the downregulation of TNF-α and IL-8 genes but not IL-6 and IL-24 genes, based on the effects of alloxan, an O-GlcNAc transferase inhibitor. Thus, GlcN likely exerts an antiinflammatroy action in OA by suppressing the expression of proinflammatory cytokine genes in synovial MH7A cells by O-GlcNAc modification-dependent and -independent mechanisms.
·journals.plos.org·
PLOS ONE Glucosamine Downregulates the IL-1ß-Induced Expression of Pro (...)
Fucoidan Extract Induces Apoptosis in MCF-7 Cells via a Mechanism Invo (...)
Fucoidan Extract Induces Apoptosis in MCF-7 Cells via a Mechanism Invo (...)
Background Fucoidan extract (FE), an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. Methodology/Principal Finding FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP) through loss of mitochondrial membrane potential (ΔΨm) and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF) and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS), which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. Conclusions/Significance These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.
·journals.plos.org·
Fucoidan Extract Induces Apoptosis in MCF-7 Cells via a Mechanism Invo (...)